AD NO. _______ DTC PROJECT NO. 8-CO-160-UXO-021 REPORT NO. ATC-8967 #### **STANDARDIZED** **UXO TECHNOLOGY DEMONSTRATION SITE** BLIND GRID SCORING RECORD NO. 237 SITE LOCATION: U.S. ARMY ABERDEEN PROVING GROUND DEMONSTRATOR: HUMAN FACTORS APPLICATIONS INC. 8 JAY GOULD COURT (UNIT D) WALDORF, MD 20602 TECHNOLOGY TYPE/PLATFORM: MAGNETOMETER SCHONSTEDT/HAND HELD PREPARED BY: U.S. ARMY ABERDEEN TEST CENTER ABERDEEN PROVING GROUND, MD 21005-5059 **JUNE 2005** Prepared for: U.S. ARMY ENVIRONMENTAL CENTER ABERDEEN PROVING GROUND, MD 21010-5401 U.S. ARMY DEVELOPMENTAL TEST COMMAND ABERDEEN PROVING GROUND, MD 21005-5055 DISTRIBUTION UNLIMITED, JUNE 2005. # **DISPOSITION INSTRUCTIONS** Destroy this document when no longer needed. Do not return to the originator. The use of trade names in this document does not constitute an official endorsement or approval of the use of such commercial hardware or software. This document may not be cited for purposes of advertisement. #### REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gethering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters for vices, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Artington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information of it indexs not disable as currently valid for MB control or the complex of compl | of information if it does | not display a current | ly valid OMB control n | umber.
HE ABOVE ADDRESS. | ner provision of law | , no person s | mail be subject to any penanty for failing to comply with a conect | | | |--|--|---|--|---|---|--|--|--| | 1. REPORT DA | TE (DD-MM-YY)
ne 2005 | YY) 2. REPO | PRT TYPE Final | | | 3. DATES COVERED (From - To)
14 June 2004 | | | | 4. TITLE AND SUBTITLE STANDARDIZED UXO TECHNOLOGY DEMONSTRATION SITE BLIN GRID SCORING RECORD NO. 237 (HUMAN FACTORS APPLICATION INC.) | | | | | | | | | | | | | | | 5c. PRO | OGRAM ELEMENT NUMBER | | | | 6. AUTHOR(S)
Overbay, Larry
The Standardiz | | George
nology Demon | ommittee | | S-CO-160-UXO-021 | | | | | | | | | | 5f. WOF | RK UNIT NUMBER | | | | Commander U.S. Army Abe ATTN: CSTE- | erdeen Test Ce
-STC-ATC-SL | nter | ND ADDRESS(ES) | | | 8. PERFORMING ORGANIZATION
REPORT NUMBER
ATC-8967 | | | | O. SPONSORIN
Commander
J.S. Army Env | | | E(S) AND ADDRESS(ES | 5) | | 10. SPONSOR/MONITOR'S ACRONYM(S) | | | | ATTN: ŠFIM- | AEC-ATT | 1D 21005-540 | 1 | | 11. SPONSOR/MONITOR'S REPORT NUMBER(S) Same as item 8 | | | | | 12. DISTRIBUTION un | | ITY STATEMENT | | | | | | | | 13. SUPPLEMEN | NTARY NOTES | | | | | | | | | ordnance (UX)
coordinated by
on the commit
Strategic Envir | O) utilizing the
Larry Overbay
tee include the
conmental Rese | e APG Standard
y and by the Sta
e U.S. Army Con | dized UXO Technolog
andardized UXO Tech
rps of Engineers, the E
clopment Program, the | y Demonstrat
nology Demo
nvironmental | ion Site I
nstration
, Security | and discriminate inert unexploded Blind Grid. The scoring record was Site Scoring Committee. Organizations Technology Certification Program, the Analysis, the U.S. Army Environmental | | | | | s Applications, | , Inc. UXO, Sta | | Standardized | UXO Te | echnology Demonstration Site Program, | | | | 16. SECURITY O | CLASSIFICATIO | | 17. LIMITATION OF ABSTRACT | 18. NUMBER
OF | 19a. NAN | ME OF RESPONSIBLE PERSON | | | | Unclassified | Unclassified | Unclassified | UL | PAGES | 19b. TELEPHONE NUMBER (Include area code) | | | | # **ACKNOWLEDGEMENTS** #### **Authors:** Larry Overbay Jr. Matthew Boutin Military Environmental Technology Demonstration Center (METDC) U.S. Army Aberdeen Test Center (ATC) U.S. Army Aberdeen Proving Ground (APG) Rick Fling Christina McClung Aberdeen Test and Support Services (ATSS) Sverdrup Technology, Inc. U.S. Army Aberdeen Proving Ground (APG) #### Contributor: George Robitaille U.S. Army Environmental Center (AEC) U.S. Army Aberdeen Proving Ground (APG) # TABLE OF CONTENTS | | | PAGE | |------------|--|------------------| | | ACKNOWLEDGMENTS | i | | | SECTION 1. GENERAL INFORMATION | | | 1.1
1.2 | BACKGROUND | 1
1
1
2 | | 1.3 | STANDARD AND NONSTANDARD INERT ORDNANCE TARGETS | 3 | | | SECTION 2. DEMONSTRATION | | | 2.1 | DEMONSTRATOR INFORMATION | 5 | | | 2.1.1 Demonstrator Point of Contact (POC) and Address | 5 | | | 2.1.2 System Description | 5 | | | 2.1.3 Data Processing Description | 6 | | | 2.1.4 Data Submission Format | 6 | | | 2.1.5 Demonstrator Quality Assurance (QA) and Quality Control (QC) | 6 | | 2.2 | 2.1.6 Additional Records | 6 | | 2.2 | APG SITE INFORMATION | 6 | | | | 6 | | | 2.2.2 Soil Type | 7 | | | | , | | | SECTION 3. FIELD DATA | | | 3.1 | DATE OF FIELD ACTIVITIES | 9 | | 3.2 | AREAS TESTED/NUMBER OF HOURS | 9 | | 3.3 | TEST CONDITIONS | 9 | | | 3.3.1 Weather Conditions | 9 | | | 3.3.2 Field Conditions | 9 | | | 3.3.3 Soil Moisture | 9 | | 3.4 | FIELD ACTIVITIES | 10 | | | 3.4.1 Setup/Mobilization | 10 | | | 3.4.2 Calibration | 10 | | | 3.4.3 Downtime Occasions | 10 | | | 3.4.4 Data Collection | 10 | | 2.5 | 3.4.5 Demobilization | 10 | | 3.5 | PROCESSING TIME | 11 | | 3.6 | DEMONSTRATOR'S FIELD PERSONNEL | 11 | | 3.7
3.8 | SUMMARY OF DAILY LOGS | 11
11 | | 3.0 | DUMINIAIN OF DAIL I LOUD | 11 | # SECTION 4. TECHNICAL PERFORMANCE RESULTS | | | PAGE | |-----|---|-------------| | 4.1 | ROC CURVES USING ALL ORDNANCE CATEGORIES | 13 | | 4.2 | ROC CURVES USING ORDNANCE LARGER THAN 20 MM | 13 | | 4.3 | PERFORMANCE SUMMARIES | 13 | | 4.4 | EFFICIENCY, REJECTION RATES, AND TYPE CLASSIFICATION | 15 | | 4.5 | LOCATION ACCURACY | 15 | | | SECTION 5. ON-SITE LABOR COSTS | | | SI | ECTION 6. COMPARISON OF RESULTS TO BLIND GRID DEMONSTRA | LION | | 2. | Delian W Commission of Reserve to Demonstra | HON | | | SECTION 7. APPENDIXES | | | A | TERMS AND DEFINITIONS | A-1 | | В | DAILY WEATHER LOGS | B-1 | | C | SOIL MOISTURE | C-1 | | D | DAILY ACTIVITY LOGS | D-1 | | E | REFERENCES | E-1 | | F | ABBREVIATIONS | F-1 | | G | DISTRIBUTION LIST | G-1 | #### **SECTION 1. GENERAL INFORMATION** #### 1.1 BACKGROUND Technologies under development for the detection and discrimination of unexploded ordnance (UXO) require testing so that their performance can be characterized. To that end, Standardized Test Sites have been developed at Aberdeen Proving Ground (APG), Maryland and U.S. Army Yuma Proving Ground (YPG), Arizona. These test sites provide a diversity of geology, climate, terrain, and weather as well as diversity in ordnance and clutter. Testing at these sites is independently administered and analyzed by the government for the purposes of characterizing technologies, tracking performance with system development, comparing performance of different systems, and comparing performance in different environments. The Standardized UXO Technology Demonstration Site Program is a multi-agency program spearheaded by the U.S. Army Environmental Center (AEC). The U.S. Army Aberdeen Test Center (ATC) and the U.S. Army Corps of Engineers Engineering Research and Development Center (ERDC) provide programmatic support. The program is being funded and supported by the Environmental Security Technology Certification Program (ESTCP), the Strategic Environmental Research and Development Program (SERDP) and the Army Environmental Quality Technology Program (EQT). #### 1.2 SCORING OBJECTIVES The objective in the Standardized UXO Technology Demonstration Site Program is to evaluate the detection and discrimination capabilities of a given technology under various field and soil conditions. Inert munitions and clutter items are positioned in various orientations and depths in the ground. The evaluation objectives are as follows: - a. To determine detection and discrimination effectiveness under realistic scenarios that vary targets, geology, clutter, topography, and vegetation. - b. To determine cost, time, and manpower requirements to operate the technology. - c. To determine demonstrator's ability to analyze survey data in a timely manner and provide prioritized "Target Lists" with associated confidence levels. - d. To provide independent site management to enable the collection of high quality, ground-truth, geo-referenced data for post-demonstration analysis. ### 1.2.1 Scoring Methodology a. The scoring of the demonstrator's performance is conducted in two stages. These two stages are termed the RESPONSE STAGE and DISCRIMINATION STAGE. For both stages, the probability of detection (P_d) and the false alarms are reported as receiver-operating characteristic (ROC) curves. False alarms are divided into those anomalies that correspond to emplaced clutter
items, measuring the probability of false positive (P_{fp}), and those that do not correspond to any known item, termed background alarms. - b. The RESPONSE STAGE scoring evaluates the ability of the system to detect emplaced targets without regard to ability to discriminate ordnance from other anomalies. For the blind grid RESPONSE STAGE, the demonstrator provides the scoring committee with a target response from each and every grid square along with a noise level below which target responses are deemed insufficient to warrant further investigation. This list is generated with minimal processing and, since a value is provided for every grid square, will include signals both above and below the system noise level. - c. The DISCRIMINATION STAGE evaluates the demonstrator's ability to correctly identify ordnance as such and to reject clutter. For the blind grid DISCRIMINATION STAGE, the demonstrator provides the scoring committee with the output of the algorithms applied in the discrimination-stage processing for each grid square. The values in this list are prioritized based on the demonstrator's determination that a grid square is likely to contain ordnance. Thus, higher output values are indicative of higher confidence that an ordnance item is present at the specified location. For digital signal processing, priority ranking is based on algorithm output. For other discrimination approaches, priority ranking is based on human (subjective) judgment. The demonstrator also specifies the threshold in the prioritized ranking that provides optimum performance, (i.e. that is expected to retain all detected ordnance and rejects the maximum amount of clutter). - d. The demonstrator is also scored on EFFICIENCY and REJECTION RATIO, which measures the effectiveness of the discrimination stage processing. The goal of discrimination is to retain the greatest number of ordnance detections from the anomaly list, while rejecting the maximum number of anomalies arising from non-ordnance items. EFFICIENCY measures the fraction of detected ordnance retained after discrimination, while the REJECTION RATIO measures the fraction of false alarms rejected. Both measures are defined relative to performance at the demonstrator-supplied level below which all responses are considered noise, i.e., the maximum ordnance detectable by the sensor and its accompanying false positive rate or background alarm rate. - e. All scoring factors are generated utilizing the Standardized UXO Probability and Plot Program, version 3.1.1. # 1.2.2 Scoring Factors Factors to be measured and evaluated as part of this demonstration include: - a. Response Stage ROC curves: - (1) Probability of Detection (P_d res). - (2) Probability of False Positive (Pfp res). - (3) Background Alarm Rate (BARres) or Probability of Background Alarm (PBAres). - b. Discrimination Stage ROC curves: - (1) Probability of Detection (P_d^{disc}). - (2) Probability of False Positive (Pfp disc). - (3) Background Alarm Rate (BAR^{disc}) or Probability of Background Alarm (P_{BA}^{disc}). - c. Metrics: - (1) Efficiency (E). - (2) False Positive Rejection Rate (R_{fp}). - (3) Background Alarm Rejection Rate (R_{BA}). - d. Other: - (1) Probability of Detection by Size and Depth. - (2) Classification by type (i.e., 20-mm, 40-mm, 105-mm, etc.). - (3) Location accuracy. - (4) Equipment setup, calibration time and corresponding man-hour requirements. - (5) Survey time and corresponding man-hour requirements. - (6) Reacquisition/resurvey time and man-hour requirements (if any). - (7) Downtime due to system malfunctions and maintenance requirements. #### 1.3 STANDARD AND NONSTANDARD INERT ORDNANCE TARGETS The standard and nonstandard ordnance items emplaced in the test areas are listed in Table 1. Standardized targets are members of a set of specific ordnance items that have identical properties to all other items in the set (caliber, configuration, size, weight, aspect ratio, material, filler, magnetic remanence, and nomenclature). Nonstandard targets are ordnance items having properties that differ from those in the set of standardized targets. TABLE 1. INERT ORDNANCE TARGETS | Standard Type | Nonstandard (NS) | |------------------------------|-------------------------| | 20-mm Projectile M55 | 20-mm Projectile M55 | | | 20-mm Projectile M97 | | 40-mm Grenades M385 | 40-mm Grenades M385 | | 40-mm Projectile MKII Bodies | 40-mm Projectile M813 | | BDU-28 Submunition | | | BLU-26 Submunition | | | M42 Submunition | | | 57-mm Projectile APC M86 | | | 60-mm Mortar M49A3 | 60-mm Mortar (JPG) | | | 60-mm Mortar M49 | | 2.75-inch Rocket M230 | 2.75-inch Rocket M230 | | | 2.75-inch Rocket XM229 | | MK 118 ROCKEYE | | | 81-mm Mortar M374 | 81-mm Mortar (JPG) | | | 81-mm Mortar M374 | | 105-mm HEAT Rounds M456 | | | 105-mm Projectile M60 | 105-mm Projectile M60 | | 155-mm Projectile M483A1 | 155-mm Projectile M483A | | | 500-lb Bomb | | | M75 Submunition | JPG = Jefferson Proving Ground. HEAT = high-explosive antitank # **SECTION 2. DEMONSTRATION** #### 2.1 DEMONSTRATOR INFORMATION # 2.1.1 <u>Demonstrator Point of Contact (POC) and Address</u> POC: Mr. Scott Hemstreet 301-705-5044 shemstreet@hfactors.com Address: Human Factors Applications, Inc. 8 Jay Gould Ct. (Unit D) Waldorf, MD 20602 # 2.1.2 System Description (provided by demonstrator) Schonstedt 52Cx Ordnance Locator. Schonstedt Magnetometers are ferrous metal locators and will only detect "iron" or magnetic materials. The size and orientation of the target and the soil characteristics of the work area limit the depth of detection. The instrument is not capable of classifying the anomaly; it will only indicate the presence or absence of a magnetic anomaly. Schonstedt Magnetometers do not require calibration. They have a simple battery function test and a "Go"/"No Go" field operational check. The magnetometers will be set in accordance with the manufacturer's handbook to the sensitivity required to detect subsurface anomalies on the project site. Figure 1. Demonstrator's system, Magnetometer Schonstedt/hand held. # 2.1.3 <u>Data Processing Description (provided by demonstrator)</u> The Human Factors Applications, Inc. (HFA) UXO team will place a plastic pin flag in the ground to record the location of a subsurface anomaly. ATC personnel will survey in the location of this flag to determine the accuracy of the "MAG and Flag" process. # 2.1.4 Data Submission Format Data were submitted for scoring in accordance with data submission protocols outlined in the Standardized UXO Technology Demonstration Site Handbook. These submitted data are not included in this report in order to protect ground truth information. # 2.1.5 <u>Demonstrator Quality Assurance (QA) and Quality Control (QC) (provided by demonstrator)</u> Magnetometer(s) will be tested daily before starting UXO operations in the morning. The UXO Technician III will perform random checks during daily operations to ensure the equipment is operating and being operated properly. If a magnetometer does not pass the daily check, it will be repaired or replaced. The Master Rated UXO Technician (UXO Technician III) will perform a random QC survey over the entire project site. This random survey will include a 100 percent survey of a 10' radius around all sites where ordnance items have been located. If an ordnance item is discovered during the QC survey, 100 percent of the site will be resurveyed Overview of Quality Assurance (QA): Test site to compare flagged anomaly locations to known locations of test items. ### 2.1.6 Additional Records The following record(s) by this vendor can be accessed via the Internet as MicroSoft Word documents at www.uxotestsites.org. #### 2.2 APG SITE INFORMATION # 2.2.1 Location The APG Standardized Test Site is located within a secured range area of the Aberdeen Area of APG. The Aberdeen Area of APG is located approximately 30 miles northeast of Baltimore at the northern end of the Chesapeake Bay. The Standardized Test Site encompasses 17 acres of upland and lowland flats, woods, and wetlands. # 2.2.2 Soil Type According to the soils survey conducted for the entire area of APG in 1998, the test site consists primarily of Elkton Series type soil (ref 2). The Elkton Series consists of very deep, slowly permeable, poorly drained soils. These soils formed in silty aeolin sediments and the underlying loamy alluvial and marine sediments. They are on upland and lowland flats and in depressions of the Mid-Atlantic Coastal Plain. Slopes range from 0 to 2 percent. ERDC conducted a site-specific analysis in May of 2002 (ref 3). The results basically matched the soil survey mentioned above. Seventy percent of the samples taken were classified as silty loam. The majority (77 percent) of the soil samples had a measured water content between 15- and 30-percent with the water content decreasing slightly with depth. For more details concerning the soil properties at the APG test site, go to www.uxotestsites.org on the web to view the entire soils description report. ### 2.2.3 Test Areas A description of the test site areas at APG is included in Table 2. TABLE 2. TEST SITE AREAS | Area | Description | | | | |------------------|---|--|--|--| | Calibration Grid | Contains 14 standard ordnance items buried in six positions at various angles and depths to allow demonstrator equipment calibration. | | | | | Blind Grid | Contains 400 grid cells in a 0.2-hectare (0.5 acre) site. The center of each grid cell contains ordnance, clutter or nothing. | | | | # **SECTION 3. FIELD DATA** # 3.1 DATE OF FIELD ACTIVITIES (14 June 2004) #### 3.2 AREAS TESTED/NUMBER OF HOURS Areas tested and total number of hours operated at each site are summarized in Table 3. TABLE 3. AREAS TESTED AND
NUMBER OF HOURS | Area | Number of Hours | |-------------------|-----------------| | Calibration Lanes | 3.33 | | Blind Grid | 2.33 | ## 3.3 TEST CONDITIONS ### 3.3.1 Weather Conditions An APG weather station located approximately one mile west of the test site was used to record average temperature and precipitation on a half hour basis for each day of operation. The temperatures listed in Table 4 represent the average temperature during field operations from 0700 to 1700 hours while precipitation data represents a daily total amount of rainfall. Hourly weather logs used to generate this summary are provided in Appendix B. TABLE 4. TEMPERATURE/PRECIPITATION DATA SUMMARY | Date, 2004 | Average Temperature, °F | Total Daily Precipitation, in. | |------------|-------------------------|--------------------------------| | 14 June | 78.67 | 2.02 | ### 3.3.2 Field Conditions HFA surveyed the Blind Grid on 14 June 2004. The Calibration Lane and Blind Grid had several muddy areas due to rain prior and during testing. # 3.3.3 Soil Moisture Three soil probes were placed at various locations within the site to capture soil moisture data: Calibration, Mogul, and Wooded areas. Measurements were collected in percent moisture and were taken twice daily (morning and afternoon) from five different soil depths (1 to 6 in., 6 to 12 in., 12 to 24 in., 24 to 36 in., and 36 to 48 in.) from each probe. Soil moisture logs are included in Appendix C. ### 3.4 FIELD ACTIVITIES ## 3.4.1 Setup/Mobilization These activities included initial mobilization and daily equipment preparation and break down. A two-person crew took 15 minutes to perform the initial setup and mobilization. There was no daily equipment preparation and end of the day equipment break down lasted 35 minutes. ### 3.4.2 Calibration HFA spent a total of 3 hours and 20 minutes in the calibration lanes, 1-hour and 20 minutes of which was spent collecting data. No other calibration activity occurred in the Calibration Lanes. ### 3.4.3 **Downtime Occasions** Occasions of downtime are grouped into five categories: equipment/data checks or equipment maintenance, equipment failure and repair, weather, Demonstration Site issues, or breaks/lunch. All downtime is included for the purposes of calculating labor costs (section 5) except for downtime due to Demonstration Site issues. Demonstration Site issues, while noted in the Daily Log, are considered non-chargeable downtime for the purposes of calculating labor costs and are not discussed. Breaks and lunches are discussed in this section and billed to the total Site Survey area. - **3.4.3.1** Equipment/data checks, maintenance. Equipment data checks and maintenance activities accounted for no site usage time. These activities included changing out batteries and routine data checks to ensure the data was being properly recorded/collected. HFA spent no additional time for breaks and lunches. - **3.4.3.2** Equipment failure or repair. No time was needed to resolve equipment failures that occurred while surveying the Blind Grid. - **3.4.3.3** Weather. No weather delays occurred during the survey. #### 3.4.4 Data Collection HFA spent a total time of 2 hours and 20 minutes in the Blind Grid area, 1-hour and 45 minutes of which was spent collecting data. #### 3.4.5 Demobilization The HFA survey crew went on to conduct a full demonstration of the site. Therefore, demobilization did not occur until 20 July 2004. On that day, it took the crew 10 minutes to break down and pack up their equipment. #### 3.5 PROCESSING TIME HFA submitted the raw data from the demonstration activities on the last day of the demonstration, as required. The scoring submittal data was also provided within the required 30-day timeframe. # 3.6 DEMONSTRATOR'S FIELD PERSONNEL Mr. Bob Dyminski Mr. Joe Curtis Mr. Rusty Mitchell Mr. Al Wittington # 3.7 DEMONSTRATOR'S FIELD SURVEYING METHOD HFA began surveying the Blind Grid in the northeast corner and continued in a north/south direction. HFA surveyed the Blind Grid by going to all 400 opportunities individually and stating whether or not a hit was located in the individual cell. ATC personnel kept a running log of whether or not each cell had a hit. #### 3.8 SUMMARY OF DAILY LOGS Daily logs capture all field activities during this demonstration and are located in Appendix D. Activities pertinent to this specific demonstration are indicated in highlighted text. # SECTION 4. TECHNICAL PERFORMANCE RESULTS ### 4.1 ROC CURVES USING ALL ORDNANCE CATEGORIES (Not applicable for this technology) ## 4.2 ROC CURVES USING ORDNANCE LARGER THAN 20 MM (Not applicable for this technology) #### 4.3 PERFORMANCE SUMMARIES Results for the Blind Grid test, broken out by size, depth and nonstandard ordnance, are presented in Tables 5a and 5b (for cost results, see section 5). Results by size and depth include both standard and nonstandard ordnance. The results by size show how well the demonstrator did at detecting/discriminating ordnance of a certain caliber range (see app A for size definitions). The results are relative to the number of ordnances emplaced. Depth is measured from the geometeric center of anomolies. The RESPONSE STAGE results are derived from the list of anomalies above the demonstrator-provided noise level. The results for the DISCRIMINATION STAGE are derived from the demonstrator's recommended threshold for optimizing UXO field cleanup by minimizing false digs and maximizing ordnance recovery. The lower 90-percent confidence limit on probability of detection and probability of false positive was calculated assuming that the number of detections and false positives are binomially distributed random variables. All results in Table 5a and 5b have been rounded to protect the ground truth. However, lower confidence limits were calculated using actual results. The overall ground truth is composed of ferrous and non-ferrous anomalies. Due to limitations of the magnetometer, the non-ferrous items cannot be detected. Therefore, the summary presented in Table 5a exhibits results based on the subset of the ground truth that is solely the ferrous anomalies. Table 5b exhibits results based on the full ground truth. All other tables presented in this section are based on scoring against the ferrous only ground truth. The response stage noise level and recommended discrimination stage threshold values are provided by the demonstrator. TABLE 5a. SUMMARY OF BLIND GRID RESULTS (FERROUS ONLY) | | | | | | By Size | | | By Depth, m | | | |--------------------------------|---------|----------|---------------|---------|---------|-------|-------|-------------|------|--| | Metric | Overall | Standard | Nonstandard | Small | Medium | Large | < 0.3 | 0.3 to <1 | >= 1 | | | | | | RESPONSE S | TAGE | | | | | | | | P_d | 0.60 | 0.65 | 0.45 | 0.55 | 0.60 | 0.70 | 0.70 | 0.65 | 0.15 | | | P _d Low 90% Conf | 0.50 | 0.56 | 0.30 | 0.42 | 0.45 | 0.45 | 0.59 | 0.50 | 0.04 | | | P _d Upper 90% Conf | 0.67 | 0.76 | 0.59 | 0.68 | 0.70 | 0.88 | 0.83 | 0.76 | 0.36 | | | P_{fp} | 0.70 | - | - | - | - | - | 0.65 | 0.75 | 0.60 | | | Pfp Low 90% Conf | 0.62 | - | - | - | - | - | 0.56 | 0.63 | 0.25 | | | P _{fp} Upper 90% Conf | 0.75 | - | - | - | - | - | 0.75 | 0.83 | 0.89 | | | P _{ba} | 0.15 | - | - | - | | - | - | - | - | | | | | | DISCRIMINATIO | ON STAG | E | | | | | | | P_d | N/A | | P _d Low 90% Conf | N/A | | P _d Upper 90% Conf | N/A | | P_{fp} | N/A | - | - | - | - | - | N/A | N/A | N/A | | | P _{fp} Low 90% Conf | N/A | - | - | - | - | - | N/A | N/A | N/A | | | P _{fp} Upper 90% Conf | N/A | - | - | - | - | | N/A | N/A | N/A | | | P _{ba} | N/A | - | - | - | - | - | - | - | - | | Response Stage Noise Level: 0.50 Recommended Discrimination Stage Threshold: 0.50 TABLE 5b. SUMMARY OF BLIND GRID RESULTS (FULL GROUND TRUTH) | | | | Nonstandard | By Size | | | By Depth, m | | | |--------------------------------|---------|----------|----------------|---------|--------|-------|-------------|-----------|------| | Metric | Overall | Standard | | Small | Medium | Large | < 0.3 | 0.3 to <1 | >= 1 | | | | | RESPONSE S | STAGE | | | | | | | P _d | 0.55 | 0.60 | 0.40 | 0.45 | 0.60 | 0.70 | 0.60 | 0.60 | 0.15 | | P _d Low 90% Conf | 0.45 | 0.51 | 0.29 | 0.35 | 0.45 | 0.45 | 0.49 | 0.48 | 0.04 | | P _d Upper 90% Conf | 0.61 | 0.70 | 0.53 | 0.56 | 0.70 | 0.88 | 0.71 | 0.74 | 0.34 | | P_{fp} | 0.70 | - | - | - | - | - | 0.65 | 0.75 | 0.60 | | P _{fp} Low 90% Conf | 0.62 | - | - | - | - | - | 0.56 | 0.63 | 0.25 | | P _{fp} Upper 90% Conf | 0.75 | - | - | - | - | - | 0.75 | 0.83 | 0.89 | | P _{ba} | 0.15 | - | | - | - | - | - | - | - | | | -/ | | DISCRIMINATION | ON STAG | E | | | • | | | P _d | N/A | P _d Low 90% Conf | N/A | P _d Upper 90% Conf | N/A | P _{fp} | N/A | - | - | - | - | - | N/A | N/A | N/A | | P _{fp} Low 90% Conf | N/A | - | - | - | - | - | N/A | N/A | N/A | | P _{fp} Upper 90% Conf | N/A | - | - | - | - | - | N/A | N/A | N/A | | P _{ba} | N/A | - | - | - | - | - | - | - | - | Response Stage Noise Level: 0.50 Recommended Discrimination Stage Threshold 0.50 Note: The recommended discrimination stage threshold values are provided by the demonstrator. No discrimination algorithm was applied. Therefore, the discrimination stage results are not applicable. # 4.4 EFFICIENCY, REJECTION RATES, AND TYPE CLASSIFICATION Due to technical limitations of the system used for this demonstration, no attempt was made to discriminate. Therefore, the following tables presented in this section are not applicable. Efficiency and rejection rates are calculated to quantify the discrimination ability at specific points of interest on the ROC curve: (1) at the point where no decrease in P_d is suffered (i.e., the efficiency is by definition equal to one) and (2) at the operator selected threshold. These values are reported in Table 6. TABLE 6. EFFICIENCY AND REJECTION RATES | | Efficiency (E) | False Positive
Rejection Rate | Background Alarm
Rejection Rate |
--------------------------------|----------------|----------------------------------|------------------------------------| | At Operating Point | N/A | N/A | N/A | | With No Loss of P _d | N/A | N/A | N/A | At the demonstrator's recommended setting, the ordnance items that were detected and correctly discriminated were further scored on whether their correct type could be identified (table 8). Correct type examples include "20-mm projectile, 105-mm HEAT Projectile, and 2.75-inch Rocket". A list of the standard type declaration required for each ordnance item was provided to demonstrators prior to testing. For example, the standard type for the three example items are 20mmP, 105H, and 2.75in, respectively. TABLE 7. CORRECT TYPE CLASSIFICATION OF TARGETS CORRECTLY DISCRIMINATED AS UXO | Size | Percentage Correc | | | | |---------|-------------------|--|--|--| | Small | N/A | | | | | Medium | N/A | | | | | Large | N/A | | | | | Overall | N/A | | | | #### 4.5 LOCATION ACCURACY The mean location error and standard deviations appear in Table 8. These calculations are based on average missed depth for ordnance correctly identified in the discrimination stage. Depths are measured from the closest point of the ordnance to the surface. For the Blind Grid, only depth errors are calculated, since (X, Y) positions are known to be the centers of each grid square. # TABLE 8. MEAN LOCATION ERROR AND STANDARD DEVIATION (M) | | Mean | Standard Deviation | |-------|------|--------------------| | Depth | N/A | N/A | Note: Demonstrator did not attempt to declare depth of detection. #### **SECTION 5. ON-SITE LABOR COSTS** A standardized estimate for labor costs associated with this effort was calculated as follows: the first person at the test site was designated "supervisor", the second person was designated "data analyst", and the third and following personnel were considered "field support". Standardized hourly labor rates were charged by title: supervisor at \$95.00/hour, data analyst at \$57.00/hour, and field support at \$28.50/hour. Government representatives monitored on-site activity. All on-site activities were grouped into one of ten categories: initial setup/mobilization, daily setup/stop, calibration, collecting data, downtime due to break/lunch, downtime due to equipment failure, downtime due to equipment/data checks or maintenance, downtime due to weather, downtime due to demonstration site issue, or demobilization. See Appendix D for the daily activity log. See section 3.4 for a summary of field activities. The standardized cost estimate associated with the labor needed to perform the field activities is presented in Table 9. Note that calibration time includes time spent in the Calibration Lanes as well as field calibrations. "Site survey time" includes daily setup/stop time, collecting data, breaks/lunch, downtime due to equipment/data checks or maintenance, downtime due to failure, and downtime due to weather. TABLE 9. ON-SITE LABOR COSTS | | No. People | Hourly Wage | Hours | Cost | |---------------|------------|---------------|-------|----------| | | | Initial Setup | | • | | Supervisor | 1 | \$95.00 | 0.25 | \$23.75 | | Data Analyst | 0 | 57.00 | 0.25 | 0.00 | | Field Support | 1 | 28.50 | 0.25 | \$7.13 | | SubTotal | | | | \$30.88 | | | | Calibration | | | | Supervisor | 1 | \$95.00 | 3.33 | \$316.35 | | Data Analyst | 0 | 57.00 | 3.33 | 0.00 | | Field Support | 1 | 28.50 | 3.33 | \$94.91 | | SubTotal | | | | \$411.26 | | | | Site Survey | | | | Supervisor | 1 | \$95.00 | 2.33 | \$221.35 | | Data Analyst | 0 | 57.00 | 2.33 | 0.00 | | Field Support | 1 | 28.50 | 2.33 | \$66.41 | | SubTotal | | | | \$287.76 | See notes at end of table. TABLE 9 (CONT'D) | | No. People | Hourly Wage | Hours | Cost | |---------------|------------|----------------|-------|----------| | | | Demobilization | | • | | Supervisor | 1 | \$95.00 | 0.17 | \$16.15 | | Data Analyst | 0 | 57.00 | 0.17 | 0.00 | | Field Support | 1 | 28.50 | 0.17 | 14.54 | | Subtotal | | | | \$30.69 | | Total | | | | \$760.59 | Notes: Calibration time includes time spent in the Calibration Lanes as well as calibration before each data run. Site Survey time includes daily setup/stop time, collecting data, breaks/lunch, downtime due to system maintenance, failure, and weather. # SECTION 6. COMPARISON OF RESULTS TO DATE No comparisons to date. # **SECTION 7. APPENDIXES** #### APPENDIX A. TERMS AND DEFINITIONS #### **GENERAL DEFINITIONS** Anomaly: Location of a system response deemed to warrant further investigation by the demonstrator for consideration as an emplaced ordnance item. Detection: An anomaly location that is within R_{halo} of an emplaced ordnance item. Emplaced Ordnance: An ordnance item buried by the government at a specified location in the test site. Emplaced Clutter: A clutter item (i.e., non-ordnance item) buried by the government at a specified location in the test site. R_{halo}: A pre-determined radius about the periphery of an emplaced item (clutter or ordnance) within which a location identified by the demonstrator as being of interest is considered to be a response from that item. If multiple declarations lie within R_{halo} of any item (clutter or ordnance), the declaration with the highest signal output within the R_{halo} will be utilized. For the purpose of this program, a circular halo 0.5 meters in radius will be placed around the center of the object for all clutter and ordnance items less than 0.6 meters in length. When ordnance items are longer than 0.6 meters, the halo becomes an ellipse where the minor axis remains 1 meter and the major axis is equal to the length of the ordnance plus 1 meter. Small Ordnance: Caliber of ordnance less than or equal to 40-mm (includes 20-mm projectile, 40-mm projectile, submunitions BLU-26, BLU-63, and M42). Medium Ordnance: Caliber of ordnance greater than 40-mm and less than or equal to 81- mm (includes 57-mm projectile, 60-mm mortar, 2.75 in. Rocket, MK118 Rockeye, 81-mm mortar). Large Ordnance: Caliber of ordnance greater than 81-mm (includes 105-mm HEAT, 105-mm projectile, 155-mm projectile, 500-pound bomb). Shallow: Items buried less than 0.3 meter below ground surface. Medium: Items buried greater than or equal to 0.3 meter and less than 1 meter below ground surface. Deep: Items buried greater than or equal to 1 meter below ground surface. Response Stage Noise Level: The level that represents the point below which anomalies are not considered detectable. Demonstrators are required to provide the recommended noise level for the Blind Grid test area. Discrimination Stage Threshold: The demonstrator selected threshold level that they believe provides optimum performance of the system by retaining all detectable ordnance and rejecting the maximum amount of clutter. This level defines the subset of anomalies the demonstrator would recommend digging based on discrimination. Binomially Distributed Random Variable: A random variable of the type which has only two possible outcomes, say success and failure, is repeated for n independent trials with the probability p of success and the probability 1-p of failure being the same for each trial. The number of successes x observed in the n trials is an estimate of p and is considered to be a binomially distributed random variable. #### RESPONSE AND DISCRIMINATION STAGE DATA The scoring of the demonstrator's performance is conducted in two stages. These two stages are termed the RESPONSE STAGE and DISCRIMINATION STAGE. For both stages, the probability of detection (P_d) and the false alarms are reported as receiver operating characteristic (ROC) curves. False alarms are divided into those anomalies that correspond to emplaced clutter items, measuring the probability of false positive (P_{fp}) and those that do not correspond to any known item, termed background alarms. The RESPONSE STAGE scoring evaluates the ability of the system to detect emplaced targets without regard to ability to discriminate ordnance from other anomalies. For the RESPONSE STAGE, the demonstrator provides the scoring committee with the location and signal strength of all anomalies that the demonstrator has deemed sufficient to warrant further investigation and/or processing as potential emplaced ordnance items. This list is generated with minimal processing (e.g., this list will include all signals above the system noise threshold). As such, it represents the most inclusive list of anomalies. The DISCRIMINATION STAGE evaluates the demonstrator's ability to correctly identify ordnance as such, and to reject clutter. For the same locations as in the RESPONSE STAGE anomaly list, the DISCRIMINATION STAGE list contains the output of the algorithms applied in the discrimination-stage processing. This list is prioritized based on the demonstrator's determination that an anomaly location is likely to contain ordnance. Thus, higher output values are indicative of higher confidence that an ordnance item is present at the specified location. For electronic signal processing, priority ranking is based on algorithm output. For other systems, priority ranking is based on human judgment. The demonstrator also selects the threshold that the demonstrator believes will provide "optimum" system performance, (i.e., that retains all the detected ordnance and rejects the maximum amount of clutter). Note: The two lists provided by the demonstrator contain identical numbers of potential target locations. They differ only in the priority ranking of the declarations. #### RESPONSE STAGE DEFINITIONS Response Stage Probability of Detection (P_d^{res}) : $P_d^{res} = (No. of response-stage detections)/(No. of emplaced ordnance in the test site).$ Response Stage False Positive (fp^{res}): An anomaly location that is within R_{halo} of an emplaced clutter item. Response Stage Probability of False Positive (P_{fp}^{res}) : $P_{fp}^{res} = (No. of response-stage false positives)/(No. of emplaced clutter
items).$ Response Stage Background Alarm (ba^{res}): An anomaly in a blind grid cell that contains neither emplaced ordnance nor an emplaced clutter item. An anomaly location in the open field or scenarios that is outside R_{halo} of any emplaced ordnance or emplaced clutter item. Response Stage Probability of Background Alarm (P_{ba}^{res}): Blind Grid only: $P_{ba}^{res} = (No. of response-stage background alarms)/(No. of empty grid locations).$ Response Stage Background Alarm Rate (BAR^{res}): Open Field only: BAR^{res} = (No. of response-stage background alarms)/(arbitrary constant). Note that the quantities P_d^{res} , P_{fp}^{res} , P_{ba}^{res} , and BAR^{res} are functions of t^{res} , the threshold applied to the response-stage signal strength. These quantities can therefore be written as $P_d^{res}(t^{res})$, $P_{fp}^{res}(t^{res})$, $P_{ba}^{res}(t^{res})$, and BAR^{res}(t^{res}). ## DISCRIMINATION STAGE DEFINITIONS Discrimination: The application of a signal processing algorithm or human judgment to response-stage data that discriminates ordnance from clutter. Discrimination should identify anomalies that the demonstrator has high confidence correspond to ordnance, as well as those that the demonstrator has high confidence correspond to non-ordnance or background returns. The former should be ranked with highest priority and the latter with lowest. Discrimination Stage Probability of Detection (P_d^{disc}) : $P_d^{disc} = (No. of discrimination-stage detections)/(No. of emplaced ordnance in the test site).$ Discrimination Stage False Positive (fp^{disc}): An anomaly location that is within R_{halo} of an emplaced clutter item. Discrimination Stage Probability of False Positive (P_{fp}^{disc}): $P_{fp}^{disc} = (No. of discrimination stage false positives)/(No. of emplaced clutter items).$ Discrimination Stage Background Alarm (ba^{disc}): An anomaly in a blind grid cell that contains neither emplaced ordnance nor an emplaced clutter item. An anomaly location in the open field or scenarios that is outside R_{halo} of any emplaced ordnance or emplaced clutter item. Discrimination Stage Probability of Background Alarm (P_{ba}^{disc}): $P_{ba}^{disc} = (No. of discrimination-stage background alarms)/(No. of empty grid locations).$ Discrimination Stage Background Alarm Rate (BAR^{disc}): BAR^{disc} = (No. of discrimination-stage background alarms)/(arbitrary constant). Note that the quantities P_d^{disc} , P_{fp}^{disc} , P_{ba}^{disc} , and BAR^{disc} are functions of t^{disc} , the threshold applied to the discrimination-stage signal strength. These quantities can therefore be written as $P_d^{disc}(t^{disc})$, $P_{fp}^{disc}(t^{disc})$, $P_{ba}^{disc}(t^{disc})$, and BAR^{disc}(t^{disc}). # RECEIVER-OPERATING CHARACERISTIC (ROC) CURVES ROC curves at both the response and discrimination stages can be constructed based on the above definitions. The ROC curves plot the relationship between P_d versus P_{fp} and P_d versus BAR or P_{ba} as the threshold applied to the signal strength is varied from its minimum (t_{min}) to its maximum (t_{max}) value. Figure A-1 shows how P_d versus P_{fp} and P_d versus BAR are combined into ROC curves. Note that the "res" and "disc" superscripts have been suppressed from all the variables for clarity. Figure A-1. ROC curves for open field testing. Each curve applies to both the response and discrimination stages. ¹Strictly speaking, ROC curves plot the P_d versus P_{ba} over a pre-determined and fixed number of detection opportunities (some of the opportunities are located over ordnance and others are located over clutter or blank spots). In an open field scenario, each system suppresses its signal strength reports until some bare-minimum signal response is received by the system. Consequently, the open field ROC curves do not have information from low signal-output locations, and, furthermore, different contractors report their signals over a different set of locations on the ground. These ROC curves are thus not true to the strict definition of ROC curves as defined in textbooks on detection theory. Note, however, that the ROC curves obtained in the Blind Grid test sites are true ROC curves. #### METRICS TO CHARACTERIZE THE DISCRIMINATION STAGE The demonstrator is also scored on efficiency and rejection ratio, which measure the effectiveness of the discrimination stage processing. The goal of discrimination is to retain the greatest number of ordnance detections from the anomaly list, while rejecting the maximum number of anomalies arising from non-ordnance items. The efficiency measures the amount of detected ordnance retained by the discrimination, while the rejection ratio measures the fraction of false alarms rejected. Both measures are defined relative to the entire response list, i.e., the maximum ordnance detectable by the sensor and its accompanying false positive rate or background alarm rate. Efficiency (E): $E = P_d^{disc}(t^{disc})/P_d^{res}(t_{min}^{res})$; Measures (at a threshold of interest), the degree to which the maximum theoretical detection performance of the sensor system (as determined by the response stage tmin) is preserved after application of discrimination techniques. Efficiency is a number between 0 and 1. An efficiency of 1 implies that all of the ordnance initially detected in the response stage was retained at the specified threshold in the discrimination stage, t^{disc} . False Positive Rejection Rate (R_{fp}) : $R_{fp} = 1 - [P_{fp}^{disc}(t^{disc})/P_{fp}^{res}(t_{min}^{res})]$; Measures (at a threshold of interest), the degree to which the sensor system's false positive performance is improved over the maximum false positive performance (as determined by the response stage tmin). The rejection rate is a number between 0 and 1. A rejection rate of 1 implies that all emplaced clutter initially detected in the response stage were correctly rejected at the specified threshold in the discrimination stage. Background Alarm Rejection Rate (Rba): $$\begin{array}{ll} Blind\ Grid:\ R_{ba}=1\ \hbox{-}\ [P_{ba}^{\ disc}(t^{disc})\!/P_{ba}^{\ res}(t_{min}^{\ res})].\\ Open\ Field:\ R_{ba}=1\ \hbox{-}\ [BAR^{disc}(t^{disc})\!/BAR^{res}(t_{min}^{\ res})]). \end{array}$$ Measures the degree to which the discrimination stage correctly rejects background alarms initially detected in the response stage. The rejection rate is a number between 0 and 1. A rejection rate of 1 implies that all background alarms initially detected in the response stage were rejected at the specified threshold in the discrimination stage. #### CHI-SQUARE COMPARISON EXPLANATION: The Chi-square test for differences in probabilities (or 2 x 2 contingency table) is used to analyze two samples drawn from two different populations to see if both populations have the same or different proportions of elements in a certain category. More specifically, two random samples are drawn, one from each population, to test the null hypothesis that the probability of event A (some specified event) is the same for both populations (ref 3). A 2 x 2 contingency table is used in the Standardized UXO Technology Demonstration Site Program to determine if there is reason to believe that the proportion of ordnance correctly detected/discriminated by demonstrator X's system is significantly degraded by the more challenging terrain feature introduced. The test statistic of the 2 x 2 contingency table is the Chi-square distribution with one degree of freedom. Since an association between the more challenging terrain feature and relatively degraded performance is sought, a one-sided test is performed. A significance level of 0.05 is chosen which sets a critical decision limit of 2.71 from the Chi-square distribution with one degree of freedom. It is a critical decision limit because if the test statistic calculated from the data exceeds this value, the two proportions tested will be considered significantly different. If the test statistic calculated from the data is less than this value, the two proportions tested will be considered not significantly different. An exception must be applied when either a 0 or 100 percent success rate occurs in the sample data. The Chi-square test cannot be used in these instances. Instead, Fischer's test is used and the critical decision limit for one-sided tests is the chosen significance level, which in this case is 0.05. With Fischer's test, if the test statistic is less than the critical value, the proportions are considered to be significantly different. Standardized UXO Technology Demonstration Site examples, where blind grid results are compared to those from the open field and open field results are compared to those from one of the scenarios, follow. It should be noted that a significant result does not prove a cause and effect relationship exists between the two populations of interest; however, it does serve as a tool to indicate that one data set has experienced a degradation in system performance at a large enough level than can be accounted for merely by chance or random variation. Note also that a result that is not significant indicates that there is not enough evidence to declare that anything more than chance or random variation within the same population is at work between the two data sets being compared. Demonstrator X achieves the following overall results after surveying each of the three progressively more difficult areas using the same system (results indicate the number of ordnance detected divided by the number of ordnance emplaced): | Blind Grid | Open Field | Moguls | |-----------------------------------|------------|-------------| | $P_d^{\text{res}} 100/100 = 1.0$ | 8/10 = .80 | 20/33 = .61 | | $P_d^{\text{disc}} 80/100 = 0.80$ | 6/10 = .60 | 8/33 = .24 | P_d^{res}: BLIND GRID versus OPEN FIELD. Using the example data above to compare
probabilities of detection in the response stage, all 100 ordnance out of 100 emplaced ordnance items were detected in the blind grid while 8 ordnance out of 10 emplaced were detected in the open field. Fischer's test must be used since a 100 percent success rate occurs in the data. Fischer's test uses the four input values to calculate a test statistic of 0.0075 that is compared against the critical value of 0.05. Since the test statistic is less than the critical value, the smaller response stage detection rate (0.80) is considered to be significantly less at the 0.05 level of significance. While a significant result does not prove a cause and effect relationship exists between the change in survey area and degradation in performance, it does indicate that the detection ability of demonstrator X's system seems to have been degraded in the open field relative to results from the blind grid using the same system. - P_d disc: BLIND GRID versus OPEN FIELD. Using the example data above to compare probabilities of detection in the discrimination stage, 80 out of 100 emplaced ordnance items were correctly discriminated as ordnance in blind grid testing while 6 ordnance out of 10 emplaced were correctly discriminated as such in open field-testing. Those four values are used to calculate a test statistic of 1.12. Since the test statistic is less than the critical value of 2.71, the two discrimination stage detection rates are considered to be not significantly different at the 0.05 level of significance. - P_d^{res}: OPEN FIELD versus MOGULS. Using the example data above to compare probabilities of detection in the response stage, 8 out of 10 and 20 out of 33 are used to calculate a test statistic of 0.56. Since the test statistic is less than the critical value of 2.71, the two response stage detection rates are considered to be not significantly different at the 0.05 level of significance. - P_d^{disc}: OPEN FIELD versus MOGULS. Using the example data above to compare probabilities of detection in the discrimination stage, 6 out of 10 and 8 out of 33 are used to calculate a test statistic of 2.98. Since the test statistic is greater than the critical value of 2.71, the smaller discrimination stage detection rate is considered to be significantly less at the 0.05 level of significance. While a significant result does not prove a cause and effect relationship exists between the change in survey area and degradation in performance, it does indicate that the ability of demonstrator X to correctly discriminate seems to have been degraded by the mogul terrain relative to results from the flat open field using the same system. # APPENDIX B. DAILY WEATHER LOGS TABLE B-1. WEATHER LOG | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/14/2004
00:00:00 | 67.2 | 67.6 | 66.6 | 77.77 | 0 | | 06/14/2004
01:00:00 | 66.9 | 67.2 | 66.5 | 80.6 | 0 | | 06/14/2004
02:00:00 | 66.9 | 67.4 | 66.5 | 81.8 | 0 | | 06/14/2004
03:00:00 | 67.1 | 67.5 | 66.8 | 83.2 | 0 | | 06/14/2004
04:00:00 | 66.4 | 67.1 | 65.9 | 88.5 | 0 | | 06/14/2004
05:00:00 | 66.3 | 66.9 | 65.8 | 93.7 | 0 | | 06/14/2004
06:00:00 | 69.4 | 72.4 | 66.2 | 93.8 | 0 | | 06/14/2004
07:00:00 | 72.8 | 73.7 | 71.9 | 87.3 | 0 | | 06/14/2004
08:00:00 | 73.2 | 73.7 | 72.9 | 86.3 | 0 | | 06/14/2004
09:00:00 | 73.9 | 74.9 | 73.1 | 85.8 | 0 | | 06/14/2004
10:00:00 | 75.8 | 77.4 | 74 | 82.2 | 0 | | 06/14/2004
11:00:00 | 77.4 | 78.2 | 76.8 | 78.82 | 0 | | 06/14/2004
12:00:00 | 78.6 | 79.5 | 77.1 | 77.58 | 0 | | 06/14/2004
13:00:00 | 80.1 | 81.7 | 78.4 | 75.74 | 0 | | 06/14/2004
14:00:00 | 82.4 | 83.6 | 80.5 | 72.69 | 0 | | 06/14/2004
15:00:00 | 83.9 | 85.2 | 83 | 70.52 | 0 | | 06/14/2004
16:00:00 | 84 | 85.2 | 83.2 | 70.64 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/14/2004
17:00:00 | 83.3 | 85.2 | 81.5 | 72.5 | 0 | | 06/14/2004
18:00:00 | 81 | 82 | 80.1 | 76.21 | 0 | | 06/14/2004
19:00:00 | 80 | 80.7 | 79.4 | 78.29 | 0 | | 06/14/2004
20:00:00 | 73.2 | 79.9 | 69.8 | 92.2 | 1.85 | | 06/14/2004
21:00:00 | 70.3 | 70.8 | 69.8 | 100 | 0 | | 06/14/2004
22:00:00 | 70.9 | 71.7 | 70.2 | 100 | 0.17 | | 06/14/2004
23:00:00 | 70.8 | 71.2 | 70.1 | 100 | 0 | | 06/15/2004
00:00:00 | 71 | 71.7 | 70.2 | 100 | 0 | | 06/15/2004
01:00:00 | 72 | 72.5 | 71.2 | 100 | 0 | | 06/15/2004
02:00:00 | 72.3 | 72.7 | 71.5 | 100 | 0 | | 06/15/2004
03:00:00 | 73.2 | 73.8 | 72.1 | 100 | 0 | | 06/15/2004
04:00:00 | 73.1 | 73.7 | 72.6 | 100 | 0 | | 06/15/2004
05:00:00 | 73.2 | 73.7 | 72.7 | 100 | 0 | | 06/15/2004
06:00:00 | 73.9 | 74.8 | 73.1 | 99.4 | 0 | | 06/15/2004
07:00:00 | 75.3 | 76.3 | 74.4 | 96.8 | 0 | | 06/15/2004
08:00:00 | 76.6 | 77.3 | 75.8 | 93.7 | 0 | | 06/15/2004
09:00:00 | 78.6 | 80.2 | 76.4 | 89.4 | 0 | | 06/15/2004
10:00:00 | 79.9 | 80.7 | 78.9 | 86.6 | 0 | | 06/15/2004
11:00:00 | 81.9 | 83.2 | 80.3 | 82.5 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/15/2004
12:00:00 | 84 | 85.1 | 82.9 | 78.82 | 0 | | 06/15/2004
13:00:00 | 85.4 | 86.9 | 84.4 | 75.77 | 0 | | 06/15/2004
14:00:00 | 87.2 | 88.1 | 86.1 | 70.49 | 0 | | 06/15/2004
15:00:00 | 87.9 | 88.6 | 87.2 | 69.52 | 0 | | 06/15/2004
16:00:00 | 87 | 87.7 | 86.3 | 72.75 | 0 | | 06/15/2004
17:00:00 | 84.9 | 87.1 | 83.3 | 76.41 | 0 | | 06/15/2004
18:00:00 | 83.6 | 85 | 82,5 | 78.85 | 0 | | 06/15/2004
19:00:00 | 82.5 | 83 | 81.5 | . 78 | 0 | | 06/15/2004
20:00:00 | 80.9 | 82.1 | 79.7 | 81.9 | 0 | | 06/15/2004
21:00:00 | 79 | 80.3 | 78.1 | 88.4 | 0 | | 06/15/2004
22:00:00 | 77.8 | 78.6 | 77.4 | 91.5 | 0 | | 06/15/2004
23:00:00 | 76.8 | 78 | 75.8 | 91.8 | 0 | | 06/16/2004
00:00:00 | 75.1 | 76.3 | 73.7 | 95.9 | 0 | | 06/16/2004
01:00:00 | 74.4 | 75.6 | 73.3 | 96.8 | 0 | | 06/16/2004
02:00:00 | 73.7 | 74.4 | 72.8 | 98.3 | 0 | | 06/16/2004
03:00:00 | 73.9 | 75.1 | 72.9 | 96.1 | 0 | | 06/16/2004
04:00:00 | 73.1 | 73.7 | 72.7 | 98 | 0 | | 06/16/2004
05:00:00 | 72.7 | 73.2 | 72 | 97 | 0 | | 06/16/2004
06:00:00 | 73.1 | 75 | 72.1 | 97.7 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/16/2004
07:00:00 | 76.1 | 77.1 | 74.7 | 92.2 | 0 | | 06/16/2004
08:00:00 | 77 | 77.5 | 76.6 | 92.1 | 0 | | 06/16/2004
09:00:00 | 77.8 | 78.5 | 77.1 | 91.8 | 0 | | 06/16/2004
10:00:00 | 78.2 | 78.7 | 77.8 | 91 | 0 | | 06/16/2004
11:00:00 | 79.4 | 80.6 | 78 | 87.9 | 0 | | 06/16/2004
12:00:00 | 80.7 | 82 | 80.1 | 84.2 | 0 | | 06/16/2004
13:00:00 | 82.7 | 83.4 | 81.5 | 78.53 | 0 | | 06/16/2004
14:00:00 | 82.6 | 83.2 | 82 | 78.06 | 0 | | 06/16/2004
15:00:00 | 83.9 | 85.2 | 82.6 | 74.85 | 0 | | 06/16/2004
16:00:00 | 85.2 | 86.7 | 84 | 69.76 | 0 | | 06/16/2004
17:00:00 | 84.2 | 85.1 | 83.2 | 73.41 | 0 | | 06/16/2004
18:00:00 | 81.9 | 84.3 | 80.1 | 81.2 | 0 | | 06/16/2004
19:00:00 | 79.4 | 80.6 | 77.7 | 88.2 | 0 | | 06/16/2004
20:00:00 | 77.2 | 78.3 | 76.3 | 93.9 | 0 | | 06/16/2004
21:00:00 | 75.9 | 76.8 | 75.1 | 96.6 | 0 | | 06/16/2004
22:00:00 | 74.8 | 75.5 | 73.9 | 98.3 | 0 | | 06/16/2004
23:00:00 | 74.7 | 75.4 | 73.9 | 99.6 | 0 | | 06/17/2004
00:00:00 | 75.3 | 75.8 | 74.8 | 99.6 | 0 | | 06/17/2004
01:00:00 | 75.5 | . 76 | 75 | 99.5 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/17/2004
02:00:00 | 75.7 | 76.2 | 75.2 | 99.6 | 0 | | 06/17/2004
03:00:00 | 75.9 | 76.3 | 75.6 | 99.8 | 0 | | 06/17/2004
04:00:00 | 75.9 | 76.3 | 75.6 | 100 | 0 | | 06/17/2004
05:00:00 | 76.1 | 76.6 | 75.8 | 100 | 0 | | 06/17/2004
06:00:00 | 76.5 | 77.3 | 76.1 | 100 | 0 | | 06/17/2004
07:00:00 | 77.7 | 78.6 | 76.8 | 97.9 | 0 | | 06/17/2004
08:00:00 | 79.3 | 79.8 | 78.2 | 91.4 | 0 | | 06/17/2004
09:00:00 | 80.6 | 81.9 | 79.5 | 86.9 | 0 | | 06/17/2004
10:00:00 | 82.6 | 83.8 | 81.3 | 81.8 | 0 | | 06/17/2004
11:00:00 | 83.9 | 85.1 | 83 | 78.97 | 0 | | 06/17/2004
12:00:00 | 85.6 | 86.8 | 84.1 | 76.97 | 0 | | 06/17/2004
13:00:00 | 86.5 | 88 | 84.7 | 76.58 | 0 | | 06/17/2004
14:00:00 | 87.4 | 88.7 | 85.9 | 73.27 | 0 | | 06/17/2004
15:00:00 | 85 | 88.3 | 82.2 | 79.42 | 0.01 | | 06/17/2004
16:00:00 | 79.4 | 83.6 | 75.1 | 92.4 | 0.1 | | 06/17/2004
17:00:00 | 80.6 | 81.9 | 78.4 | 92.7 | 0 | | 06/17/2004
18:00:00 | 78.9 | 79.5 | 78.3 | 88.9 | 0 | | 06/17/2004
19:00:00 | 76.8 | 79.1 | 75.5 | 90.4 | 0 | | 06/17/2004
20:00:00 | 75.5 | 76.2 | 75 | 93.5 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/17/2004
21:00:00 | 75.1 | 76 | 74.5 | 97.9 | 0.07 | | 06/17/2004
22:00:00 | 74.5 | 75.1 | 74
 99.1 | 0 | | 06/17/2004
23:00:00 | 74.4 | 74.9 | 73.7 | 99.4 | 0 | | 06/18/2004
00:00:00 | 73.6 | 74 | 73 | 99.8 | 0 | | 06/18/2004
01:00:00 | 73 | 73.7 | 72.1 | 100 | 0 | | 06/18/2004
02:00:00 | 73.9 | 75.1 | 72.6 | 99.9 | 0 | | 06/18/2004
03:00:00 | 74.9 | 75.3 | 74.4 | 99.5 | 0 | | 06/18/2004
04:00:00 | 74.2 | 74.9 | 73.2 | 99.9 | 0 | | 06/18/2004
05:00:00 | 73.4 | 73.9 | 72.7 | 100 | 0 | | 06/18/2004
06:00:00 | 74.2 | 75.6 | 73.2 | 98.9 | 0 | | 06/18/2004
07:00:00 | 75.9 | 76.3 | 75.1 | 94.3 | 0 | | 06/18/2004
08:00:00 | 76.7 | 77.7 | 75.5 | 92.5 | 0 | | 06/18/2004
09:00:00 | 80.5 | 83 | 77.5 | 82.3 | 0 | | 06/18/2004
10:00:00 | 83.1 | 84.8 | 82.1 | 73.33 | 0 | | 06/18/2004
11:00:00 | 85.2 | 86.3 | 84.2 | 68.18 | 0 | | 06/18/2004
12:00:00 | 87.3 | 88.7 | 85.5 | 64.59 | 0 | | 06/18/2004
13:00:00 | 88.2 | 89.3 | 87 | 61.76 | 0 | | 06/18/2004
14:00:00 | 89.5 | 90.7 | 87.5 | 59.42 | 0 | | 06/18/2004
15:00:00 | 89 | 90.7 | 87.6 | 65.78 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/18/2004
16:00:00 | 88.8 | 89.5 | 88.2 | 65.74 | 0 | | 06/18/2004
17:00:00 | 87.7 | 89.2 | 86.3 | 67.75 | 0 . | | 06/18/2004
18:00:00 | 86.4 | 88.1 | 84.5 | 72.47 | 0 | | 06/18/2004
19:00:00 | 83.9 | 85 | 82.7 | 77.62 | 0 | | 06/18/2004
20:00:00 | 80.7 | 83 | 79.5 | 91.1 | 0 | | 06/18/2004
21:00:00 | 78.6 | 79.7 | 77.2 | 95.2 | 0 | | 06/18/2004
22:00:00 | 76.9 | 77.7 | 75.9 | 98.5 | 0 | | 06/18/2004
23:00:00 | 76.6 | 77.3 | 75.7 | 99 | 0 | | 06/19/2004
00:00:00 | 74.9 | 76 | 74.2 | 99.6 | 0 | | 06/19/2004
01:00:00 | 74.9 | 75.5 | 74.2 | 99.8 | 0 | | 06/19/2004
02:00:00 | 74.9 | 75.6 | 74.3 | 89.3 | 0 | | 06/19/2004
03:00:00 | 74.9 | 76.1 | 73.7 | 82.9 | 0 | | 06/19/2004
04:00:00 | 75 | 75.8 | 74 | 76.03 | 0 | | 06/19/2004
05:00:00 | 73.9 | 74.9 | 72.7 | 75.79 | 0 | | 06/19/2004
06:00:00 | 73.1 | 73.7 | 72.7 | 77.58 | 0 | | 06/19/2004
07:00:00 | . 74 | 74.9 | 73.2 | 74.54 | 0 | | 06/19/2004
08:00:00 | 75.4 | 76.3 | 74.5 | 70.92 | 0 | | 06/19/2004
09:00:00 | 77 | 78.2 | 76 | 64.99 | 0 | | 06/19/2004
10:00:00 | 78.1 | 78.9 | 77.2 | 57.07 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/19/2004 | 80 | 81.2 | 78.1 | 50.11 | 0 | | 11:00:00 | | | | | | | 06/19/2004
12:00:00 | 80.9 | 82 | 79.9 | 48.06 | 0 | | 06/19/2004
13:00:00 | 81.9 | 82.9 | 80.1 | 49.74 | 0 | | 06/19/2004
14:00:00 | 81.9 | 83.1 | 81 | 51.08 | 0 | | 06/19/2004
15:00:00 | 80.1 | 82.5 | 78.5 | 57.58 | 0 | | 06/19/2004
16:00:00 | 79.4 | 80.5 | 78.4 | 61.63 | 0 | | 06/19/2004
17:00:00 | 81.1 | 82 | 79.6 | 57.19 | 0 | | 06/19/2004
18:00:00 | 80.7 | 81.7 | 79.5 | 54.59 | 0 | | 06/19/2004
19:00:00 | 78.9 | 80 | 77.6 | 59.91 | 0 | | 06/19/2004
20:00:00 | 76 | 77.7 | 74.3 | 64.53 | 0 | | 06/19/2004
21:00:00 | 73.1 | 74.9 | 71.5 | 59.41 | 0 | | 06/19/2004
22:00:00 | 71.7 | 72.5 | 71 | 52.03 | 0 | | 06/19/2004
23:00:00 | 69.8 | 71.7 | 68.3 | 51.63 | 0 | | 06/20/2004
00:00:00 | 67.3 | 69 | 65.5 | 50.29 | 0 | | 06/20/2004
01:00:00 | 65.3 | 66.3 | 63.8 | 51.44 | 0 | | 06/20/2004
02:00:00 | 63.6 | 64.8 | 62.4 | 54.52 | 0 | | 06/20/2004
03:00:00 | 62 | 62.8 | 60.9 | 57.6 | 0 | | 06/20/2004
04:00:00 | 59.8 | 61.3 | 58.3 | 62.44 | 0 | | 06/20/2004
05:00:00 | 56.5 | 58.5 | 54.5 | 72.25 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/20/2004
06:00:00 | 56.8 | 59 | 55.7 | 77.01 | 0 | | 06/20/2004
07:00:00 | 60.3 | 62.4 | 58.6 | 66.05 | 0 | | 06/20/2004
08:00:00 | 62.7 | 64.2 | 61.3 | 59.57 | 0 | | 06/20/2004
09:00:00 | 64.2 | 65.5 | 63.1 | 56.01 | 0 | | 06/20/2004
10:00:00 | 65.9 | 67.6 | 64.4 | 53.45 | 0 | | 06/20/2004
11:00:00 | 67.7 | 69 | 66.5 | 49.93 | 0 | | 06/20/2004
12:00:00 | 68.9 | 70 | 67.8 | 45.85 | 0 | | 06/20/2004
13:00:00 | 70.6 | 71.7 | 69.6 | 45.35 | 0 | | 06/20/2004
14:00:00 | 71.9 | 73.1 | 71.1 | 42.42 | 0 | | 06/20/2004
15:00:00 | 73.3 | 74.4 | 71.8 | 41.09 | 0 | | 06/20/2004
16:00:00 | 73.5 | 75 | 72.2 | 45.98 | 0 | | 06/20/2004
17:00:00 | 72.7 | 73.3 | 72 | 50.78 | 0 | | 06/20/2004
18:00:00 | 72.7 | 73.4 | 71.9 | 51.08 | 0 | | 06/20/2004
19:00:00 | 71.1 | 72.1 | 69.4 | 53.47 | 0 | | 06/20/2004
20:00:00 | 67.4 | 70 | 64.1 | 63.07 | 0 | | 06/20/2004
21:00:00 | 63.1 | 64.5 | 60.6 | 76.34 | 0 | | 06/20/2004
22:00:00 | 59.7 | 61.2 | 59 | 88.9 | 0 | | 06/20/2004
23:00:00 | 58.5 | 59.4 | 57.3 | 92.3 | 0 | | 06/21/2004
00:00:00 | 57 | 57.9 | 56.2 | 96.3 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/21/2004
01:00:00 | 56 | 56.8 | 54.6 | 98.2 | 0 | | 06/21/2004
02:00:00 | 55 | 56 | 53.9 | 99.4 | 0 . | | 06/21/2004
03:00:00 | 54 | 54.6 | 53.4 | 100 | 0 | | 06/21/2004
04:00:00 | 54.1 | 54.7 | 53.5 | 100 | 0 | | 06/21/2004
05:00:00 | 54.1 | 54.8 | 53.3 | 100 | 0 | | 06/21/2004
06:00:00 | 56.2 | 59 | 53.5 | 99.5 | 0 | | 06/21/2004
07:00:00 | 62.8 | 65.7 | 58.6 | 87.9 | 0 | | 06/21/2004
08:00:00 | 68.7 | 70.8 | 65.2 | 70.21 | 0 | | 06/21/2004
09:00:00 | 71.5 | 72.9 | 70 | 72.26 | 0 | | 06/21/2004
10:00:00 | 73.2 | 74.9 | 71.2 | 61.88 | 0 | | 06/21/2004
11:00:00 | 74.6 | 76.3 | 73.8 | 54.52 | 0 | | 06/21/2004
12:00:00 | 75.5 | 76.7 | 74.2 | 49.3 | 0 | | 06/21/2004
13:00:00 | 77.1 | 78.1 | 76.2 | 44.27 | 0 | | 06/21/2004
14:00:00 | 77.9 | 79.1 | 76.9 | 47.03 | 0 | | 06/21/2004
15:00:00 | 78 | 78.9 | 77.2 | 53.29 | 0 | | 06/21/2004
16:00:00 | 78.3 | 78.9 | 77.5 | 55.27 | 0 | | 06/21/2004
17:00:00 | 77.9 | 78.8 | 77.3 | 56.98 | 0 | | 06/21/2004
18:00:00 | 77.2 | 77.9 | 76.3 | 61.32 | 0 | | 06/21/2004
19:00:00 | 75.7 | 76.5 | 74.6 | 64.78 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/21/2004
20:00:00 | 73.6 | 75 | 72.7 | 69.06 | 0 | | 06/21/2004
21:00:00 | 73.5 | 73.9 | 73 | 68.37 | 0 | | 06/21/2004
22:00:00 | 73.4 | 74.5 | 72.6 | 71.87 | 0 | | 06/21/2004
23:00:00 | 73.2 | 74.3 | 71.5 | 75.78 | 0 | | 06/22/2004
00:00:00 | 70.7 | 71.9 | 69.6 | 81.9 | 0 | | 06/22/2004
01:00:00 | 68.9 | 70 | 68.2 | 87.6 | 0 | | 06/22/2004
02:00:00 | 68.9 | 69.4 | 68.2 | 88.2 | 0 | | 06/22/2004
03:00:00 | 69 | 73.1 | 67.6 | 87.5 | 0 | | 06/22/2004
04:00:00 | 73.7 | 74.2 | 73 | 75.15 | 0 | | 06/22/2004
05:00:00 | 73.6 | 74 | 73 | 74.95 | 0 | | 06/22/2004
06:00:00 | 73.3 | 74 | 72.9 | 74.67 | 0 | | 06/22/2004
07:00:00 | 74.7 | 75.6 | 73.7 | 71.38 | 0 | | 06/22/2004
08:00:00 | 76 | 77.3 | 75 | 67.23 | 0 | | 06/22/2004
09:00:00 | 76.4 | 77.3 | 75.6 | 68.5 | 0 | | 06/22/2004
10:00:00 | 77.6 | 79.2 | 76.1 | 68.89 | 0 | | 06/22/2004
11:00:00 | 78.9 | 80.3 | 77.5 | 69.4 | 0 | | 06/22/2004
12:00:00 | 80.2 | 81.8 | 79.4 | 69.91 | 0 | | 06/22/2004
13:00:00 | 81.1 | 82.7 | 80 | 68.25 | 0 | | 06/22/2004
14:00:00 | 83 | 83.8 | 82.1 | 66.24 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/22/2004
15:00:00 | 84.1 | 86.1 | 82.7 | 65.96 | 0 | | 06/22/2004
16:00:00 | 83.4 | 84.9 | 82.5 | 68.75 | 0 | | 06/22/2004
17:00:00 | 82.2 | 82.9 | 80.5 | 73.26 | 0 | | 06/22/2004
18:00:00 | 78.5 | 81.1 | 72.4 | 75.28 | 0.1 | | 06/22/2004
19:00:00 | 71.8 | 72.6 | 70.6 | 95.4 | 0.14 | | 06/22/2004
20:00:00 | 70.8 | 71.9 | 69.9 | 98.2 | 0 | | 06/22/2004
21:00:00 | 69.8 | 70.4 | 69.3 | 99.9 | 0 | | 06/22/2004
22:00:00 | 69.8 | 70.5 | 69 | 100 | 0 | | 06/22/2004
23:00:00 | 69.9 | 71 | 68.8 | 100 | 0 | | 06/23/2004
00:00:00 | 70.2 | 71.3 | 69.4 | 100 | 0 | | 06/23/2004
01:00:00 | 70.8 | 71.9 | 69.6 | 100 | 0 | | 06/23/2004
02:00:00 | 71 | 71.5 | 70.2 | 100 | 0 | | 06/23/2004
03:00:00 | 71.3 | 71.8 | 70.8 | 100 | 0 | | 06/23/2004
04:00:00 | 71.5 | 71.8 | 71 | 97.5 | 0 | | 06/23/2004
05:00:00 | 70.8 | 71.3 | 70.2 | 96 | 0 | | 06/23/2004
06:00:00 | 70.5 | 71.3 | 70 | 95.2 | 0 | | 06/23/2004
07:00:00 | 71.7 | 73 | 70.8 | 89.1 | 0.01 | | 06/23/2004
08:00:00 | 72.9 | 73.7 | 72.1 | 79.54 | 0 | | 06/23/2004
09:00:00 | 72.5 | 73.5 | 71.9 | 76.87 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/23/2004
10:00:00 | 74.9 | 76.9 | 73.1 | 65.72 | 0 | | 06/23/2004
11:00:00 | 76.2 | 76.8 | 75.6 | 60.85 | 0 | | 06/23/2004
12:00:00 | 76.7 | 78.2 | 75.7 | 60.51 | 0 | | 06/23/2004
13:00:00 | 77.4 | 78.3 | 76.5 | 58.85 | 0 | | 06/23/2004
14:00:00 |
77.9 | 78.7 | . 77.2 | 59.2 | 0 | | 06/23/2004
15:00:00 | 76.9 | 77.8 | 75.9 | 61.33 | 0 | | 06/23/2004
16:00:00 | 76.9 | 78.4 | 76.2 | 62.38 | 0 | | 06/23/2004
17:00:00 | 77.7 | 78.4 | 76.8 | 57.65 | 0 | | 06/23/2004
18:00:00 | 77.6 | 78.2 | 76.5 | 60 | 0 | | 06/23/2004
19:00:00 | 75.8 | 76.9 | 74.4 | 71.75 | 0 | | 06/23/2004
20:00:00 | 72.8 | 74.6 | 70.7 | 82.8 | 0 | | 06/23/2004
21:00:00 | 69.5 | 70.9 | 67.5 | 91.9 | 0 | | 06/23/2004
22:00:00 | 66.9 | 67.7 | 65.8 | 97.7 | 0 | | 06/23/2004
23:00:00 | 66.4 | 67 | 65.8 | 99.2 | 0 | | 06/24/2004
00:00:00 | 65.8 | 66.3 | 65.4 | 99.9 | 0 | | 06/24/2004
01:00:00 | 64.9 | 65.6 | 64.2 | 100 | 0 | | 06/24/2004
02:00:00 | 64 | 65.1 | 62.7 | 100 | 0 | | 06/24/2004
03:00:00 | 62.9 | 63.7 | 62.4 | 100 | 0 | | 06/24/2004
04:00:00 | 62.3 | 62.8 | 61.6 | 100 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/24/2004
05:00:00 | 61.5 | 62.4 | 60.7 | 100 | 0 | | 06/24/2004
06:00:00 | 62.3 | 63.8 | 60.8 | 100 | 0 | | 06/24/2004
07:00:00 | 67.1 | 70.5 | 63.4 | 99.9 | 0 | | 06/24/2004
08:00:00 | 72.4 | 73.8 | 70.4 | 89.8 | 0 | | 06/24/2004
09:00:00 | 75.7 | 77.4 | 73.6 | 81 | 0.02 | | 06/24/2004
10:00:00 | 78.6 | 80 | 77.3 | 75.18 | 0 | | 06/24/2004 · 11:00:00 | 80.3 | 81.4 | 79 | 68.22 | 0 | | 06/24/2004
12:00:00 | 81.4 | 82.4 | 80.3 | 62.91 | 0 | | 06/24/2004
13:00:00 | 83.1 | 83.9 | 81.8 | 54.11 | 0 | | 06/24/2004
14:00:00 | 84.3 | 85 | 83.3 | 50.54 | 0 | | 06/24/2004
15:00:00 | 84.7 | 85.2 | 84.1 | 46.56 | 0 | | 06/24/2004
16:00:00 | 84.4 | 85.2 | 83.7 | 49.49 | 0 | | 06/24/2004
17:00:00 | 83.6 | 84.1 | 83.1 | 51.02 | 0 | | 06/24/2004
18:00:00 | 82.2 | 83.3 | 81.4 | 54.35 | 0 | | 06/24/2004
19:00:00 | 80.2 | 81.6 | 78.5 | 60.7 | 0 | | 06/24/2004
20:00:00 | 77.5 | 79.1 | 75.2 | 67.35 | 0 | | 06/24/2004
21:00:00 | 73.6 | 76.2 | 72.1 | 79.11 | 0 | | 06/24/2004
22:00:00 | 72.8 | 73.9 | 71.3 | 82.4 | 0 | | 06/24/2004
23:00:00 | 70.8 | 71.7 | 69.8 | 88.7 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/25/2004
00:00:00 | 70.3 | 71.8 | 69.4 | 89.8 | 0 | | 06/25/2004
01:00:00 | 69 | 69.9 | 68.3 | 93.5 | 0 | | 06/25/2004
02:00:00 | 68.4 | 69.1 | 67.7 | 95.5 | 0 | | 06/25/2004
03:00:00 | 67.8 | 68.3 | 67.3 | 98.3 | 0 | | 06/25/2004
04:00:00 | 67.7 | 68.6 | 67 | 99.3 | 0 | | 06/25/2004
05:00:00 | 68 | 68.5 | 67.3 | 99.4 | 0 | | 06/25/2004
06:00:00 | 68.6 | 70.8 | 67.4 | 100 | 0 | | 06/25/2004
07:00:00 | 73 | 75.1 | 70.5 | 94 | 0.01 | | 06/25/2004
08:00:00 | 77.1 | 77.8 | 74.8 | 84.1 | 0 | | 06/25/2004
09:00:00 | 77.9 | 78.9 | 77 | 82.3 | 0 | | 06/25/2004
10:00:00 | 78.6 | 79.7 | 77.6 | 83.2 | 0 | | 06/25/2004
11:00:00 | 80.8 | 81.8 | 79.5 | 78.08 | 0 | | 06/25/2004
12:00:00 | 80.8 | 82.4 | 79.9 | 81.1 | 0 | | 06/25/2004
13:00:00 | 82.9 | 84.3 | 81.5 | 76.88 | 0 | | 06/25/2004
14:00:00 | 83.1 | 83.8 | 82.5 | 76.67 | 0 | | 06/25/2004
15:00:00 | 84 | 85 | 83.1 | 70.26 | 0 | | 06/25/2004
16:00:00 | 83.4 | 84.3 | 82.5 | 72.37 | 0 | | 06/25/2004
17:00:00 | 77.7 | 82.8 | 72.1 | 78.4 | 0 | | 06/25/2004
18:00:00 | 70 | 72.3 | 69 | 94.3 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/25/2004
19:00:00 | 69.8 | 70.8 | 69 | 97.5 | 0 | | 06/25/2004
20:00:00 | 70.6 | 71.1 | 70.3 | 96.4 | 0 | | 06/25/2004
21:00:00 | 70 | 70.8 | 69.4 | 98.1 | 0 | | 06/25/2004
22:00:00 | 69.9 | 70.4 | 69.4 | 99.5 | 0 | | 06/25/2004
23:00:00 | 69.6 | 70.2 | 69 | 99.3 | 0 | | 06/26/2004
00:00:00 | 69.5 | 70 | 69 | 100 | 0 | | 06/26/2004
01:00:00 | 69.2 | 69.6 | 68.9 | 100 | 0 | | 06/26/2004
02:00:00 | 69.3 | 69.6 | 68.8 | 100 | 0 | | 06/26/2004
03:00:00 | 69.2 | 69.8 | 68.7 | 100 | 0 | | 06/26/2004
04:00:00 | 68.7 | 69.4 | 68 | 100 | 0 | | 06/26/2004
05:00:00 | 68.2 | 68.6 | 67.7 | 100 | 0 | | 06/26/2004
06:00:00 | 68.8 | 69.4 | 68.2 | 100 | 0 | | 06/26/2004
07:00:00 | 69.7 | 71.1 | 69 | 100 | 0.01 | | 06/26/2004
08:00:00 | 72.5 | 73.3 | 70.7 | 95.5 | 0 | | 06/26/2004
09:00:00 | 74 | 75.2 | 72.7 | 86.3 | 0 | | 06/26/2004
10:00:00 | 75.6 | 76.9 | 74.4 | 79.59 | 0 | | 06/26/2004
11:00:00 | 77 | 78.1 | 76.2 | 75.19 | 0 | | 06/26/2004
12:00:00 | 78 | 78.7 | 77.3 | 69.48 | 0 | | 06/26/2004
13:00:00 | 78.6 | 79.5 | 77.6 | 67.09 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/26/2004
14:00:00 | 80 | 82.3 | 77.7 | 63.7 | 0 | | 06/26/2004
15:00:00 | 80.3 | 82.7 | 78.8 | 57.93 | 0 | | 06/26/2004
16:00:00 | 81.1 | 82 | 80 | 45.06 | 0 | | 06/26/2004
17:00:00 | 80.3 | 81.2 | 79.4 | 39.62 | 0 | | 06/26/2004
18:00:00 | 78.7 | 80 | 77.6 | 38.02 | 0 | | 06/26/2004
19:00:00 | 76.6 | 78.1 | 74.9 | 40.65 | 0 | | 06/26/2004
20:00:00 | 73.1 | 75.1 | 71.2 | 46.97 | 0 | | 06/26/2004
21:00:00 | 68.3 | 71.5 | 65.1 | 60.11 | 0 | | 06/26/2004
22:00:00 | 65.2 | 66.3 | 64.3 | 68.34 | 0 | | 06/26/2004
23:00:00 | 63.7 | 65.2 | 62.7 | 71.14 | 0 | | 06/27/2004
00:00:00 | 63.4 | 64.9 | 60.6 | 69.32 | 0 | | 06/27/2004
01:00:00 | 61.5 | 63.2 | 59.5 | 74.63 | 0 | | 06/27/2004
02:00:00 | 58.9 | 60.9 | 56.9 | 81.2 | 0 | | 06/27/2004
03:00:00 | 56.2 | 57.7 | 54.8 | 92.1 | 0 | | 06/27/2004
04:00:00 | 54.8 | 55.7 | 53.8 | 95.6 | 0 | | 06/27/2004
05:00:00 | 53.7 | 54.6 | 53.2 | 98.4 | 0 | | 06/27/2004
06:00:00 | 54.9 | 57 | 53.4 | 96.2 | 0 | | 06/27/2004
07:00:00 | 61.7 | 65.9 | 56.8 | 83.3 | 0 | | 06/27/2004
08:00:00 | 68 | 70.6 | 65.5 | 64.91 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/27/2004
09:00:00 | 71.9 | 73.5 | 70.1 | 49.27 | 0 | | 06/27/2004
10:00:00 | 73.9 | 75.3 | 72.9 | 45.04 | 0 | | 06/27/2004
11:00:00 | 75.8 | 77 | 74.5 | 45.89 | 0 | | 06/27/2004
12:00:00 | 76.6 | 77.6 | 75.3 | 46.85 | 0 | | 06/27/2004
13:00:00 | 78 | 79.3 | 76.3 | 48.53 | 0 | | 06/27/2004
14:00:00 | 79.6 | 81.1 | 78 | 39.6 | 0 | | 06/27/2004
15:00:00 | 80.5 | 81.7 | 79.4 | 37.7 | 0 | | 06/27/2004
16:00:00 | 80.5 | 82.5 | 78.2 | 39.48 | 0 | | 06/27/2004
17:00:00 | 79.1 | 80.5 | 78.1 | 39.21 | 0 | | 06/27/2004
18:00:00 | 79.3 | 80.8 | 77.7 | 38.93 | 0 | | 06/27/2004
19:00:00 | 77.8 | 79.2 | 76.2 | 43.44 | 0 | | 06/27/2004
20:00:00 | 73.9 | 76.3 | 70.6 | 55.21 | 0 | | 06/27/2004
21:00:00 | 67.6 | 71.2 | 65 | 73.97 | 0 | | 06/27/2004
22:00:00 | 64.9 | 65.4 | 64.1 | 82.3 | 0 | | 06/27/2004
23:00:00 | 62.8 | 64.8 | 61.6 | 89.7 | 0 | | 06/28/2004
00:00:00 | 61.4 | 62.5 | 60.6 | 94.4 | 0 | | 06/28/2004
01:00:00 | 60.6 | 61.2 | 59.9 | 96.7 | 0 | | 06/28/2004
02:00:00 | 59.5 | 60.2 | 58.7 | 97.4 | 0 | | 06/28/2004
03:00:00 | 58.7 | 59.6 | 57.7 | 98.9 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/28/2004
04:00:00 | 58.1 | 58.7 | 56.9 | 99.6 | 0 | | 06/28/2004
05:00:00 | 56.9 | 57.6 | 56.3 | 100 | 0 | | 06/28/2004
06:00:00 | 60.3 | 62.9 | 57.1 | 93.8 | 0 | | 06/28/2004
07:00:00 | 67.5 | 72.9 | 62.5 | 83 | 0 | | 06/28/2004
08:00:00 | 73.8 | 76.1 | 71.8 | 68.08 | 0 | | 06/28/2004
09:00:00 | 77.1 | 80.7 | 75.1 | 57.26 | 0 | | 06/28/2004
10:00:00 | 79.4 | 80.3 | 78.3 | 50.14 | 0 | | 06/28/2004
11:00:00 | 79.1 | 80 | 78.4 | 49.64 | 0 | | 06/28/2004
12:00:00 | 80.1 | 81.5 | 78.8 | 46.01 | 0 | | 06/28/2004
13:00:00 | 80.3 | 81.5 | 79.5 | 45.88 | 0 | | 06/28/2004
14:00:00 | 81.3 | 82.6 | 80 | 43.27 | 0 | | 06/28/2004
15:00:00 | 82.1 | 83 | 80.9 | 43.71 | 0 | | 06/28/2004
16:00:00 | 82.3 | 83.1 | 81.6 | 44.52 | 0 | | 06/28/2004
17:00:00 | 81.6 | 82.7 | 79.7 | 42.77 | 0 | | 06/28/2004
18:00:00 | 80.3 | 81.3 | 78.8 | 45.12 | 0 | | 06/28/2004
19:00:00 | 78.9 | 80.5 | 77.6 | 53.84 | 0 | | 06/28/2004
20:00:00 | 76.2 | 77.9 | 74.3 | 63.59 | 0 | | 06/28/2004
21:00:00 | 73.4 | 74.8 | 71.3 | 73.87 | 0 | | 06/28/2004
22:00:00 | 70 | 71.9 | 67.8 | 82.4 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/28/2004
23:00:00 | 67.6 | 68.6 | 66.7 | 89.3 | 0 | | 06/29/2004
00:00:00 | 67.8 | 69.3 | 67 | 90.2 | 0.01 | | 06/29/2004
01:00:00 | 66.1 | 67.9 | 65.2 | 96.8 | 0.02 | | 06/29/2004
02:00:00 | 65.1 | 65.8 | 64.5 | 97 | 0 | | 06/29/2004
03:00:00 | 63.9 | 65 | 63 | 95.5 | 0 | | 06/29/2004
04:00:00 | 62.1 | 63.2 | 61.3 | 96.1 | 0 | | 06/29/2004
05:00:00 | 61 | 61.5 | 60.4 | 95.6 | 0 | | 06/29/2004
06:00:00 |
61.5 | 62.8 | 60.6 | 91.5 | 0 | | 06/29/2004
07:00:00 | 63.8 | 64.9 | 62.5 | 84.8 | 0 | | 06/29/2004
08:00:00 | 65.7 | 66.5 | 64.6 | 79.5 | 0 | | 06/29/2004
09:00:00 | 67.7 | 69.2 | 66.2 | 74.82 | 0 | | 06/29/2004
10:00:00 | 69.4 | 70.8 | 67.9 | 70.32 | 0 | | 06/29/2004
11:00:00 | 71.9 | 73.6 | 70.3 | 64.49 | 0 | | 06/29/2004
12:00:00 | 73.6 | 75.5 | 72.4 | 59.88 | 0 | | 06/29/2004
13:00:00 | 75.3 | 76.9 | 74.2 | 55.3 | 0 | | 06/29/2004
14:00:00 | 76.5 | 77.8 | 74.9 | 51.87 | 0 | | 06/29/2004
15:00:00 | 77.2 | 78.8 | 75.7 | 49.11 | 0 | | 06/29/2004
16:00:00 | 78 | 79.5 | 76.9 | 46.67 | 0 | | 06/29/2004
17:00:00 | 78 | 79.4 | 76.6 | 46.98 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/29/2004
18:00:00 | 78 | 79.1 | 76.6 | 45.85 | 0 | | 06/29/2004
19:00:00 | 76.9 | 78.2 | 74.6 | 46.35 | 0 | | 06/29/2004
20:00:00 | 71.2 | 75.1 | 68.2 | 61.99 | 0 | | 06/29/2004
21:00:00 | 65.8 | 68.4 | 63.5 | 79.42 | 0 | | 06/29/2004
22:00:00 | 63.3 | 64.4 | 62 | 87.5 | 0 | | 06/29/2004
23:00:00 | 61.3 | 62.2 | 60.8 | 93.6 | 0 | | 06/30/2004 · 00:00:00 | 60.4 | 61.2 | 59.6 | 95.7 | 0 | | 06/30/2004
01:00:00 | 58.9 | 60 | 57.7 | 97.6 | 0 | | 06/30/2004
02:00:00 | 58.3 | 59.5 | 57.3 | 97.5 | 0 | | 06/30/2004
03:00:00 | 57.7 | 58.4 | 56.6 | 98.8 | 0 | | 06/30/2004
04:00:00 | 57.8 | 58.4 | 57.1 | 99.3 | 0 | | 06/30/2004
05:00:00 | 57.4 | 58.4 | 56.8 | 99.6 | 0 | | 06/30/2004
06:00:00 | 58.5 | 60.9 | 57.4 | 98.8 | 0 | | 06/30/2004
07:00:00 | 64.9 | 67.6 | 60.7 | 88.4 | 0 | | 06/30/2004
08:00:00 | 70.5 | 74.1 | 67.4 | 72.77 | 0 | | 06/30/2004
09:00:00 | 75.3 | 77.3 | 73.1 | 61.62 | 0 | | 06/30/2004
10:00:00 | 78.9 | 80.1 | 77.1 | 53.13 | 0 | | 06/30/2004
11:00:00 | 80.8 | 82 | 79.6 | 48.2 | 0 | | 06/30/2004
12:00:00 | 81.6 | 82.5 | 80.3 | 47.46 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 06/30/2004
13:00:00 | 82.4 | 83.6 | 81.6 | 47.31 | 0 | | 06/30/2004
14:00:00 | 82.6 | 83.1 | 81.8 | 48.13 | 0 | | 06/30/2004
15:00:00 | 83.1 | 83.9 | 82 | 47.64 | 0 | | 06/30/2004
16:00:00 | 83 | 83.7 | 82.5 | 46.45 | 0 | | 06/30/2004
17:00:00 | 82.5 | 83.1 | 82 | 47.04 | 0 | | 06/30/2004
18:00:00 | 81.3 | 82.3 | 80 | 51.73 | 0 | | 06/30/2004
19:00:00 | 79 | 80.3 | 77.2 | 63.29 | 0 | | 06/30/2004
20:00:00 | 74.8 | 77.3 | 73.1 | 78.71 | 0 | | 06/30/2004
21:00:00 | 72.9 | 73.9 | 72 | 89.1 | 0 | | 06/30/2004
22:00:00 | 71.5 | 72.5 | 70.6 | 93.8 | 0 | | 06/30/2004
23:00:00 | 70.4 | 71.5 | 69 | 97.3 | 0 | | 07/01/2004
00:00:00 | 69.5 | 70.6 | 68.8 | 99.5 | 0 | | 07/01/2004
01:00:00 | 68.3 | 69.9 | 66.5 | 99.6 | 0 | | 07/01/2004
02:00:00 | 67.3 | 68.9 | 65.6 | 100 | 0 | | 07/01/2004
03:00:00 | 66.2 | 67.7 | 65.1 | 100 | 0 | | 07/01/2004
04:00:00 | 66.3 | 68 | 64.9 | 100 | 0 | | 07/01/2004
05:00:00 | 65.1 | 65.6 | 64.5 | 100 | 0 | | 07/01/2004
06:00:00 | 66.7 | 68.2 | 64.8 | 100 | 0 | | 07/01/2004
07:00:00 | 70.3 | 72.3 | 67.9 | 97.1 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/01/2004
08:00:00 | 73.2 | 74.4 | 72 | 92.3 | 0 | | 07/01/2004
09:00:00 | 76.2 | 78.7 | 74 | 87.1 | 0 | | 07/01/2004
10:00:00 | 79.4 | 80.2 | 78.4 | 77.68 | 0 | | 07/01/2004
11:00:00 | 80.7 | 82 | 79.4 | 75.52 | 0 | | 07/01/2004
12:00:00 | 82.3 | 84.3 | 80.9 | 71.53 | 0 | | 07/01/2004
13:00:00 | 83.5 | 84.6 | 82.5 | 68.25 | 0 | | 07/01/2004
14:00:00 | 83.3 | 84.7 | 81.9 | 70.27 | 0 | | 07/01/2004
15:00:00 | 81.2 | 83 | 80.3 | 67.08 | 0 | | 07/01/2004
16:00:00 | 79.8 | 81.8 | 78.4 | 78.23 | 0 | | 07/01/2004
17:00:00 | 80.6 | 81.9 | 78.8 | 73.83 | 0 | | 07/01/2004
18:00:00 | 78.8 | 79.6 | 78.2 | 72.48 | 0 | | 07/01/2004
19:00:00 | 77.8 | 79.5 | 76.6 | 74.01 | 0 | | 07/01/2004
20:00:00 | 75.8 | 77.1 | 73.4 | 80.6 | 0 | | 07/01/2004
21:00:00 | 73.9 | 74.8 | 73.4 | 89.6 | 0 | | 07/01/2004
22:00:00 | 72.7 | 73.7 | 71.7 | 93.2 | 0 | | 07/01/2004
23:00:00 | 71.4 | 72 | 70.8 | 95.6 | 0 | | 07/02/2004
00:00:00 | 70.4 | 71.2 | 69.3 | 97.4 | 0 | | 07/02/2004
01:00:00 | 69 | 69.6 | 68.3 | 99.1 | 0 | | 07/02/2004
02:00:00 | 68.4 | 69.5 | 67.5 | 99.9 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/02/2004
03:00:00 | 67.9 | 68.5 | 67.4 | 100 | 0 | | 07/02/2004
04:00:00 | 67.8 | 68.6 | 67.3 | 100 | . 0 | | 07/02/2004
05:00:00 | 67.9 | 68.5 | 66.9 | 100 | 0 | | 07/02/2004
06:00:00 | 68.8 | 71.1 | 67.1 | 100 | 0 | | 07/02/2004
07:00:00 | 72.9 | 74.7 | 70.8 | 92.9 | 0 | | 07/02/2004
08:00:00 | 76.6 | 79.3 | 74.4 | 81.4 | 0 | | 07/02/2004
09:00:00 | 80.5 | 82.6 | 78.6 | 68.37 | 0 | | 07/02/2004
10:00:00 | 83.7 | 85 | 82 | 56.3 | 0 | | 07/02/2004
11:00:00 | 85.7 | 86.9 | 84.5 | 48.98 | 0 | | 07/02/2004
12:00:00 | 86.8 | 87.9 | 86.1 | 38.44 | 0 | | 07/02/2004
13:00:00 | 87.5 | 88.7 | 86.7 | 37.64 | 0 | | 07/02/2004
14:00:00 | 88.3 | 89.3 | 87.2 | 34.62 | 0 | | 07/02/2004
15:00:00 | 88.9 | 90.1 | 87.5 | 36.35 | 0 | | 07/02/2004
16:00:00 | 87.8 | 88.3 | 87.1 | 41.41 | 0 | | 07/02/2004
17:00:00 | 87.3 | 88.1 | 86.3 | 42.47 | 0 | | 07/02/2004
18:00:00 | 86 | 87 | 84.5 | 45.22 | 0 | | 07/02/2004
19:00:00 | 83.8 | 84.9 | 81.9 | 52.23 | 0 | | 07/02/2004
20:00:00 | 77.7 | 82.1 | 75.1 | 65.32 | 0 | | 07/02/2004
21:00:00 | 74.1 | . 76.6 | 72.2 | 72.79 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/02/2004
22:00:00 | 70.9 | 72.8 | 69.3 | 84 | 0 | | 07/02/2004
23:00:00 | 70 | 71 | 69.3 | 87.2 | 0 | | 07/03/2004
00:00:00 | 68.7 | 70.6 | 67.6 | 90.6 | 0 | | 07/03/2004
01:00:00 | 67.7 | 68.6 | 66.9 | 94.4 | 0 | | 07/03/2004
02:00:00 | 68.7 | 71 | 66.9 | 90.5 | 0 | | 07/03/2004
03:00:00 | 71.1 | 73.3 | 68.2 | 81.1 | 0 | | 07/03/2004
04:00:00 | 72.4 | 73 | 71.6 | 69.53 | 0 | | 07/03/2004
05:00:00 | 71.8 | 73 | 70.7 | 65.62 | 0 | | 07/03/2004
06:00:00 | 71 | 71.4 | 70.6 | 65.79 | 0 | | 07/03/2004
07:00:00 | 71.6 | 72.4 | 70.8 | 64.24 | 0 | | 07/03/2004
08:00:00 | 73.6 | 75.1 | 72.2 | 62.16 | 0 | | 07/03/2004
09:00:00 | 75.8 | 76.9 | 74.7 | 58.5 | 0 | | 07/03/2004
10:00:00 | 76.5 | 78 | 75.3 | 58.29 | 0 | | 07/03/2004
11:00:00 | 78.6 | 80.1 | 77.3 | 56.37 | 0 | | 07/03/2004
12:00:00 | 80.6 | 81.8 | 79.4 | 53.06 | 0 | | 07/03/2004
13:00:00 | 82.2 | 83.2 | 81.3 | 49.88 | 0 | | 07/03/2004
14:00:00 | 83.8 | 84.6 | 82.7 | 45.92 | 0 | | 07/03/2004
15:00:00 | 84.6 | 85.2 | 83.9 | 43.99 | 0 | | 07/03/2004
16:00:00 | 85.2 | 86.4 | 84.5 | 44.28 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/03/2004
17:00:00 | 84.8 | 85.6 | 84.1 | 49.75 | 0 | | 07/03/2004
18:00:00 | 84.2 | 84.7 | 83.4 | 52.94 | 0 | | 07/03/2004
19:00:00 | 82.2 | 83.8 | 79.5 | 61.31 | 0 | | 07/03/2004
20:00:00 | 78.4 | 79.9 | 77.2 | 70.72 | 0 | | 07/03/2004
21:00:00 | 76.6 | 78.1 | 74.9 | 68.45 | 0 | | 07/03/2004
22:00:00 | 73.7 | 75 | 71.9 | 74.19 | 0 | | 07/03/2004
23:00:00 | 71.2 | 72.4 | 70.6 | 82.4 | 0 | | 07/04/2004
00:00:00 | 70.1 | 71.2 | 68.6 | 87 | 0 | | 07/04/2004
01:00:00 | 68.7 | 69.9 | 67 | 93.4 | 0 | | 07/04/2004
02:00:00 | 67.8 | 68.7 | 66.9 | 97.7 | 0 | | 07/04/2004
03:00:00 | 67.9 | 68.8 | 66.9 | 99.3 | 0.02 | | 07/04/2004
04:00:00 | 68.5 | 69.4 | 67.6 | 98.8 | 0 | | 07/04/2004
05:00:00 | 69.9 | 70.6 | 69.1 | 98.6 | 0 | | 07/04/2004
06:00:00 | 71.1 | 71.8 | 70.4 | 97.3 | 0 | | 07/04/2004
07:00:00 | 71.4 | 72 | 71 | 97.5 | 0 | | 07/04/2004
08:00:00 | 72.6 | 73.2 | 71.5 | 95.6 | 0 | | 07/04/2004
09:00:00 | 73.1 | 73.9 | 72.5 | 94.2 | 0 | | 07/04/2004
10:00:00 | 77 | 80 | 73.6 | 84.4 | 0 | | 07/04/2004
11:00:00 | 80.2 | 81.2 | 79.3 | 78.13 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/04/2004
12:00:00 | 82.8 | 84.4 | 80.7 | 69.93 | 0 | | 07/04/2004
13:00:00 | 83.9 | 84.9 | 82.7 | 66.69 | 0 | | 07/04/2004
14:00:00 | 82.3 | 83.2 | 81.4 | 70.92 | 0 | | 07/04/2004
15:00:00 | 80.9 | 82.5 | 77.8 | 74.8 | 0.01 | | 07/04/2004
16:00:00 | 76.7 | 78.5 | 74.5 | 89.7 | 0.03 | | 07/04/2004
17:00:00 | 75.5 | 76.6 | 74.3 | 96.4 | 0.06 | | 07/04/2004
18:00:00 | 76 | 76.6 | 74.5 | 93.6 | 0.17 | | 07/04/2004
19:00:00 | 74.6 | 75 | 74.2 | 98.7 | 0.18 | | 07/04/2004
20:00:00 | 74.6 | 75.1 | 74 | 97.5 | 0 | | 07/04/2004
21:00:00 | 74.6 | 75 | 74 | 98.2 | 0 | |
07/04/2004
22:00:00 | 75 | 75.5 | 74.5 | 98.1 | 0 | | 07/04/2004
23:00:00 | 75.6 | 76.1 | 75 | 97.2 | 0 | | 07/05/2004
00:00:00 | 75.7 | 76.2 | 75.2 | 97 | 0.05 | | 07/05/2004
01:00:00 | 75.5 | 75.8 | 75.1 | 98 | 0 | | 07/05/2004
02:00:00 | 75.5 | 75.8 | 75 | 98.7 | 0 | | 07/05/2004
03:00:00 | 75.3 | 75.6 | 74.9 | 99.8 | 0 | | 07/05/2004
04:00:00 | 75.5 | 75.8 | 75 | 100 | 0.01 | | 07/05/2004
05:00:00 | 75.2 | 75.7 | 74.9 | 100 | 0 | | 07/05/2004
06:00:00 | 75.2 | 76.2 | 74.5 | 100 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/05/2004
07:00:00 | 76.8 | 77.9 | 75.7 | 98.4 | 0 | | 07/05/2004
08:00:00 | 78.5 | 79.6 | 77.5 | 92.5 | 0 | | 07/05/2004
09:00:00 | 80.5 | 81.7 | 79.5 | 87.9 | 0 | | 07/05/2004
10:00:00 | 83.1 | 84.8 | 81.5 | 82.7 | 0 | | 07/05/2004
11:00:00 | 85.6 | 86.7 | 84.3 | 75.92 | 0 | | 07/05/2004
12:00:00 | 87.8 | 89.1 | 86.4 | 66.68 | 0 | | 07/05/2004
13:00:00 | 89.6 | 90.8 | 88.3 | 58.16 | 0 | | 07/05/2004
14:00:00 | 90.5 | 91.2 | 89.5 | 54.36 | 0 | | 07/05/2004
15:00:00 | 90.8 | 91.7 | 89.4 | 53.36 | 0 | | 07/05/2004
16:00:00 | 84.3 | 91 | 76.2 | 70.32 | 0.23 | | 07/05/2004
17:00:00 | 81.5 | 84.1 | 79.2 | 83.6 | 0 | | 07/05/2004
18:00:00 | 81 | 83.7 | 75.3 | 82.9 | 0.02 | | 07/05/2004
19:00:00 | 75.1 | 76.3 | 73.5 | 84.3 | 0 | | 07/05/2004
20:00:00 | 72.9 | 73.9 | 72.2 | 91.6 | 0 | | 07/05/2004
21:00:00 | 72.5 | 73.8 | 71.3 | 93.3 | 0 | | 07/05/2004
22:00:00 | 71.5 | 72.1 | 70.8 | 97.1 | 0 | | 07/05/2004
23:00:00 | 71.7 | 72.3 | 71.1 | 97.9 | 0 | | 07/06/2004
00:00:00 | 71.9 | 72.8 | 71.1 | 97.9 | 0 | | 07/06/2004
01:00:00 | 72 | 72.6 | 71 | 98 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/06/2004
02:00:00 | 71.7 | 72.8 | 70.7 | 94.9 | 0 | | 07/06/2004
03:00:00 | 70.5 | 71.8 | 69.2 | 92.9 | 0 . | | 07/06/2004
04:00:00 | 72.7 | 73.8 | 71.4 | 81.7 | 0 | | 07/06/2004
05:00:00 | 72.2 | 73.1 | 71.2 | 80.6 | 0 | | 07/06/2004
06:00:00 | 72.9 | 73.5 | 72 | 78.94 | 0 | | 07/06/2004
07:00:00 | 74 | 74.9 | 7,3.1 | 76.58 | 0 | | 07/06/2004
08:00:00 | 75.4 | 76.7 | 74.4 | 73.35 | 0 | | 07/06/2004
09:00:00 | 76.4 | 77.8 | 75.8 | 66.2 | 0 | | 07/06/2004
10:00:00 | 76.9 | 78 | 75.8 | 65.49 | 0 | | 07/06/2004
11:00:00 | 78.1 | 79.3 | 77.1 | 62.91 | 0 | | 07/06/2004
12:00:00 | 79.6 | 80.6 | 78.3 | 60.72 | 0 | | 07/06/2004
13:00:00 | 81.4 | 82.5 | 80 | 57.94 | 0 | | 07/06/2004
14:00:00 | 83.1 | 84.9 | 81.9 | 55.34 | 0 | | 07/06/2004
15:00:00 | 84.3 | 85.2 | 83.4 | 52.46 | 0 | | 07/06/2004
16:00:00 | 85 | 85.6 | 84.5 | 50.13 | 0 | | 07/06/2004
17:00:00 | 85.4 | 85.9 | 85 | 47.1 | 0 | | 07/06/2004
18:00:00 | 85.5 | 86.1 | 84.9 | 46.52 | 0 | | 07/06/2004
19:00:00 | 84.3 | 85.9 | 81.8 | 50.45 | 0 | | 07/06/2004
20:00:00 | 78.9 | 82 | 75.8 | 66.41 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/06/2004
21:00:00 | 75 | 76 | 74 | 78.75 | 0 | | 07/06/2004
22:00:00 | 72.3 | 74.3 | 71.2 | 86.8 | 0 | | 07/06/2004
23:00:00 | 70.6 | 71.7 | 69.3 | 92 | 0 | | 07/07/2004
00:00:00 | 69.4 | 70.1 | 68.6 | 95.8 | 0 | | 07/07/2004
01:00:00 | 68.2 | 69 | 67.2 | 97.7 | 0 | | 07/07/2004
02:00:00 | 67.7 | 68.2 | 66.9 | 98.8 | 0 | | 07/07/2004
03:00:00 | 66.9 | 67.6 | 66.3 | 99.6 | 0 | | 07/07/2004
04:00:00 | 67.1 | 67.6 | 66.6 | 99.8 | 0.01 | | 07/07/2004
05:00:00 | 66.8 | 67.3 | 66.3 | 99.9 | 0 | | 07/07/2004
06:00:00 | 67.3 | 70 | 66.3 | 99.9 | 0 | | 07/07/2004
07:00:00 | 74.1 | 77.1 | . 70 | 87.8 | 0 | | 07/07/2004
08:00:00 | 78.2 | 79.4 | 76.8 | 73.2 | 0 | | 07/07/2004
09:00:00 | 80.4 | 81.5 | 79.2 | 67.38 | 0 | | 07/07/2004
10:00:00 | 82.4 | 83.7 | 81.2 | 62.88 | 0 | | 07/07/2004
11:00:00 | 84.7 | 86.2 | 82.9 | 61.9 | 0 | | 07/07/2004
12:00:00 | 86.7 | 88.1 | 85.4 | 59.66 | 0 | | 07/07/2004
13:00:00 | 87.8 | 88.6 | 87.2 | 60.02 | 0 | | 07/07/2004
14:00:00 | 88.6 | 89.9 | 87.8 | 61.18 | 0 | | 07/07/2004
15:00:00 | 85.2 | 88.4 | 81.6 | 71.04 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/07/2004
16:00:00 | 76.5 | 81.9 | 74.1 | 90.4 | 0.01 | | 07/07/2004
17:00:00 | 73.5 | 74.6 | 72.7 | 92.9 | 0.09 | | 07/07/2004
18:00:00 | 72.6 | 73.9 | 71.9 | 97.3 | 0.23 | | 07/07/2004
19:00:00 | 73.6 | 73.9 | 73.1 | 98.2 | 0 | | 07/07/2004
20:00:00 | 73.4 | 74 | 72.7 | 98.6 | 0 | | 07/07/2004
21:00:00 | 72.5 | 73 | 71.8 | 99.9 | 0 | | 07/07/2004
22:00:00 | 72.3 | 72.9 | 71.8 | 100 | 0 | | 07/07/2004
23:00:00 | 72.7 | 73.3 | 72.1 | 99.9 | 0 | | 07/08/2004
00:00:00 | 72.8 | 73.3 | 72 | 99 | 0 | | 07/08/2004
01:00:00 | 71.6 | 72.6 | 70.6 | 99.9 | 0 | | 07/08/2004
02:00:00 | 70.7 | 71.3 | 70 | 100 | 0 | | 07/08/2004
03:00:00 | 70 | 70.5 | 69.4 | 100 | 0 | | 07/08/2004
04:00:00 | 69.5 | 70 | 68.8 | 100 | 0 | | 07/08/2004
05:00:00 | 69.1 | 69.6 | 68.7 | 100 | 0 | | 07/08/2004
06:00:00 | 69.6 | 71.1 | 68.7 | 100 | 0 | | 07/08/2004
07:00:00 | 72.5 | 74.1 | 70.7 | 98.4 | 0 | | 07/08/2004
08:00:00 | 75.9 | 77.3 | 73.8 | 89.3 | 0 | | 07/08/2004
09:00:00 | 78.7 | 80.7 | 76.9 | 80.6 | 0 | | 07/08/2004
10:00:00 | 81.6 | 82.9 | 80.2 | 70.35 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/08/2004
11:00:00 | 82.7 | 83.9 | 81.2 | 64.79 | 0 | | 07/08/2004
12:00:00 | 84.3 | 85.4 | 83.4 | 58.92 | 0 . | | 07/08/2004
13:00:00 | 85.4 | 86.4 | 83.9 | 50.26 | 0 | | 07/08/2004
14:00:00 | 86.4 | 87.2 | 85 | 46.7 | 0 | | 07/08/2004
15:00:00 | 86.3 | 87.7 | 84.6 | 46.14 | 0 | | 07/08/2004
16:00:00 | 85.4 | 86.8 | 84.3 | 49.45 | 0 | | 07/08/2004
17:00:00 | 84.9 | 87.1 | 83.9 | 51.58 | 0 | | 07/08/2004
18:00:00 | 85.6 | 86.9 | 83.6 | 51.54 | 0 | | 07/08/2004
19:00:00 | 83.6 | 84.6 | 82 | 55.82 | 0 | | 07/08/2004
20:00:00 | 78.2 | 82.2 | 74.5 | 62.29 | 0 | | 07/08/2004
21:00:00 | 73.5 | 75 | 70.6 | 80.2 | 0 | | 07/08/2004
22:00:00 | 69.7 | 71.2 | 67.4 | 89 | 0 | | 07/08/2004
23:00:00 | 67.9 | 69.4 | 67.2 | 90 | 0 | | 07/09/2004
00:00:00 | 67.5 | 69 | 66.1 | 88.4 | 0 | | 07/09/2004
01:00:00 | 67.6 | 68.2 | 66.2 | 85.5 | 0 | | 07/09/2004
02:00:00 | 65.9 | 67.5 | 64.9 | 89 | 0 | | 07/09/2004
03:00:00 | 66.6 | 67.3 | 65.7 | 85 | 0 | | 07/09/2004
04:00:00 | 68.8 | 71.9 | 65.6 | 78.73 | 0 | | 07/09/2004
05:00:00 | 73.5 | 74.7 | 71.7 | 67.34 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/09/2004
06:00:00 | 72.1 | 73.5 | 70.8 | 72.55 | 0 | | 07/09/2004
07:00:00 | 74.1 | 75 | 72.9 | 68.51 | 0 | | 07/09/2004
08:00:00 | 75.7 | 76.8 | 74.9 | 61.92 | 0 | | 07/09/2004
09:00:00 | 76.8 | 78.1 | 75.7 | 55.58 | 0 | | 07/09/2004
10:00:00 | 78.4 | 79.2 | 77.5 | 52.32 | 0 | | 07/09/2004
11:00:00 | 79 | 79.7 | 78.3 | 48.99 | 0 | | 07/09/2004
12:00:00 | 80.2 | 81.3 | 79.1 | 50.57 | 0 | | 07/09/2004
13:00:00 | 81.2 | 81.9 | 80.3 | 49.02 | 0 | | 07/09/2004
14:00:00 | 81.7 | 82.5 | 80.1 | 48.69 | 0 | | 07/09/2004
15:00:00 | 81.9 | 83.2 | 80.7 | 48.66 | 0 | | 07/09/2004
16:00:00 | 82.8 | 84.3 | 81.3 | 49.11 | 0 | | 07/09/2004
17:00:00 | 83 | 83.9 | 82.2 | 48.19 | 0 | | 07/09/2004
18:00:00 | 82.2 | 83.3 | 80.8 | 50.02 | 0 | | 07/09/2004
19:00:00 | 79.3 | 81.1 | 77.1 | 57.24 | 0 | | 07/09/2004
20:00:00 | 76.2 | 77.5 | 74.5 | 63.23 | 0 | | 07/09/2004
21:00:00 | 73.6 | 74.9 | 71.7 | 69.04 | 0 | | 07/09/2004
22:00:00 | 71.3 | 72 | 70.4 | 73.48 | 0 | | 07/09/2004
23:00:00 | 68.6 | 71.7 | 66.6 | 80.9 | 0 | | 07/10/2004
00:00:00 | 66.2 | 68 | 64.5 | 88.7 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/10/2004
01:00:00 | 64.8 | 66.7 | 63.4 | 92 | 0 | | 07/10/2004
02:00:00 | 63.7 | 64.5 | 62.8 | 95.1 | 0 | | 07/10/2004
03:00:00 | 62.5 | 63.2 | 61.5 | 96.5 | 0 | | 07/10/2004
04:00:00 | 61.6 | 62.2 | 60.8 | 98.6 | 0 | | 07/10/2004
05:00:00 | 60.7 | 62 | 60.1 | 99.2 | 0 | | 07/10/2004
06:00:00 | 61.1 | 62.6 | 60.3 | 99.4 | 0 | | 07/10/2004
07:00:00 | 66.5 | 70.5 | 62.3 | 91.8 | 0 | | 07/10/2004
08:00:00 | 73.2 | 76.4 | 70.5 | 70.8 | 0 | | 07/10/2004
09:00:00 | 76.7 | 77.9 | 75.6 | 59.01 | 0 | | 07/10/2004
10:00:00 | 78.4 | 80.1 | 76.9 | 55.96 | 0 | | 07/10/2004
11:00:00 | 79.5 | 80.7 | 78.3 | 54.68 | 0 | | 07/10/2004
12:00:00 | 81.1 | 82.3 | 79.7 | 52.92 | 0 | | 07/10/2004
13:00:00 | 82 | 82.8 |
81.3 | 53.37 | 0 | | 07/10/2004
14:00:00 | 83.2 | 84.6 | 81.9 | 54.34 | 0 | | 07/10/2004
15:00:00 | 83.6 | 84.5 | 83 | 53.88 | 0 | | 07/10/2004
16:00:00 | 84.6 | 86.1 | 83 | 52.56 | 0 | | 07/10/2004
17:00:00 | 84 | 85.4 | 83 | 51.28 | 0 | | 07/10/2004
18:00:00 | 83.4 | 84.3 | 82.5 | 53.88 | 0 | | 07/10/2004
19:00:00 | 81.9 | 84.8 | 78.9 | 61.95 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/10/2004
20:00:00 | 77.5 | 79.1 | 76.2 | 73.71 | 0 | | 07/10/2004
21:00:00 | 74 | 76.5 | 73 | 83.8 | 0 | | 07/10/2004
22:00:00 | 72.5 | 73.8 | 71.5 | 89 | 0 | | 07/10/2004
23:00:00 | 71.9 | 73 | 70.1 | 90.9 | 0 | | 07/11/2004
00:00:00 | 69.9 | 70.5 | 68.3 | 95.8 | 0 | | 07/11/2004
01:00:00 | 68.8 | 69.4 | 68.2 | 97.9 | 0 | | 07/11/2004
02:00:00 | 68.2 | 68.9 | 67.7 | 98.3 | 0 | | 07/11/2004
03:00:00 | 67.6 | 68.5 | 66.8 | 98.6 | 0 | | 07/11/2004
04:00:00 | 67.2 | 67.7 | 66.5 | 99.4 | 0 | | 07/11/2004
05:00:00 | 66.9 | 67.3 | 66.4 | 99.6 | 0 | | 07/11/2004
06:00:00 | 67.2 | 68.2 | 66.1 | 99.1 | 0 | | 07/11/2004
07:00:00 | 72.3 | 75.9 | 68 | 93.2 | 0 | | 07/11/2004
08:00:00 | 76.9 | 77.9 | 75.5 | 84.6 | 0 | | 07/11/2004
09:00:00 | 78.5 | 79.2 | 77.5 | 80.5 | 0 | | 07/11/2004
10:00:00 | 78.7 | 80.6 | 77.7 | 75.71 | 0 | | 07/11/2004
11:00:00 | 81.2 | 83.1 | 80 | 67.88 | 0 | | 07/11/2004
12:00:00 | 83.4 | 84.3 | 82.3 | 64.04 | 0 | | 07/11/2004
13:00:00 | 84.8 | 85.7 | 83.6 | 61.65 | 0 | | 07/11/2004
14:00:00 | 86.1 | 87.1 | 85.1 | 56.7 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/11/2004
15:00:00 | 86.6 | 87.4 | 85.7 | 56.12 | 0 | | 07/11/2004
16:00:00 | 85.7 | 86.9 | 84.1 | 59.45 | 0 | | 07/11/2004
17:00:00 | 83.3 | 84.4 | 82.7 | 70.15 | 0 | | 07/11/2004
18:00:00 | 81.8 | 83.7 | 80.2 | 73.07 | 0 | | 07/11/2004
19:00:00 | 81.4 | 82 | 80.1 | 69.67 | 0 | | 07/11/2004
20:00:00 | 80.9 | 81.5 | 80.1 | 65.92 | 0 | | 07/11/2004
21:00:00 | 80 | 80.7 | 79.5 | 67.11 | 0 | | 07/11/2004
22:00:00 | 79.4 | 80.1 | 78.8 | 73.07 | 0 | | 07/11/2004
23:00:00 | 78.5 | 79.2 | 77.6 | 79.84 | 0 | | 07/12/2004
00:00:00 | 77.8 | 78.2 | 77.1 | 83 | 0 | | 07/12/2004
01:00:00 | 76.8 | 77.7 | 76 | 84.5 | 0 | | 07/12/2004
02:00:00 | 75.8 | 76.3 | 75.3 | 86.2 | 0 | | 07/12/2004
03:00:00 | 75.6 | 76 | 75.2 | 86.1 | 0 | | 07/12/2004
04:00:00 | 75.4 | 75.7 | 75 | 86.5 | 0 | | 07/12/2004
05:00:00 | 75 | 75.4 | 74.6 | 87.2 | 0 | | 07/12/2004
06:00:00 | 75 | 75.8 | 74.4 | 87.3 | 0 | | 07/12/2004
07:00:00 | 75.9 | 76.8 | 75.5 | 85.3 | 0 | | 07/12/2004
08:00:00 | 77.3 | 78 | 76.3 | 84.5 | 0 | | 07/12/2004
09:00:00 | 77.6 | 78.5 | 76.9 | 85.8 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/12/2004
10:00:00 | 78 | 79.1 | 77.3 | 87.4 | 0 | | 07/12/2004
11:00:00 | 78.8 | 79.4 | 77.4 | 88.5 | 0.08 | | 07/12/2004
12:00:00 | 76.4 | 77.6 | 75.8 | 97.5 | 0.4 | | 07/12/2004
13:00:00 | 76.6 | 79.2 | 75.1 | 97.4 | 0.09 | | 07/12/2004
14:00:00 | 76 | 78.2 | 74.5 | 97.7 | 0.08 | | 07/12/2004
15:00:00 | 77.5 | 79.2 | 75.2 | 94.7 | 0 | | 07/12/2004
16:00:00 | 75.5 | 78.8 | 73.9 | 97.2 | 0.36 | | 07/12/2004
17:00:00 | 74 | 74.6 | 73.4 | 99.6 | 1.81 | | 07/12/2004
18:00:00 | 74 | 74.6 | 73.6 | 100 | 0.16 | | 07/12/2004
19:00:00 | 74 | 74.6 | 73.5 | 100 | 0.28 | | 07/12/2004
20:00:00 | 73.8 | 74.4 | 73.1 | 99.9 | 0 | | 07/12/2004
21:00:00 | 73.2 | 73.7 | 72.9 | 100 | 0 | | 07/12/2004
22:00:00 | 73 | 73.3 | 72.5 | 100 | 0 | | 07/12/2004
23:00:00 | 73.3 | 73.8 | 72.7 | 100 | 0.3 | | 07/13/2004
00:00:00 | 73 | 73.6 | 72.6 | 100 | 0 | | 07/13/2004
01:00:00 | 72.7 | 73.1 | 72.4 | 100 | 0 | | 07/13/2004
02:00:00 | 72.3 | 72.9 | 71.8 | 100 | 0 | | 07/13/2004
03:00:00 | 72.2 | 72.9 | 71.5 | 100 | 0 | | 07/13/2004
04:00:00 | 72.2 | 72.6 | 71.5 | 100 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/13/2004
05:00:00 | 71.4 | 72 | 70.8 | 99.8 | 0 | | 07/13/2004
06:00:00 | 71.1 | 71.4 | 70.8 | 100 | 0 | | 07/13/2004
07:00:00 | 71.1 | 71.4 | 70.7 | 100 | 0 | | 07/13/2004
08:00:00 | 71.4 | 71.8 | 71 | 99.6 | 0 | | 07/13/2004
09:00:00 | 71.2 | 71.7 | 70.8 | 98.5 | 0 | | 07/13/2004
10:00:00 | 71.2 | 72.4 | 70.6 | 97.2 | 0 | | 07/13/2004
11:00:00 | 74.1 | 75.8 | 72.1 | 88.7 | 0 | | 07/13/2004
12:00:00 | 75.2 | 76.8 | 74.2 | 85.7 | 0 | | 07/13/2004
13:00:00 | 76 | 76.8 | 75.2 | 83 | 0 | | 07/13/2004
14:00:00 | 77.3 | 78.9 | 76.3 | 79.39 | 0 | | 07/13/2004
15:00:00 | 78.3 | 79.4 | 77.2 | 76.45 | 0 | | 07/13/2004
16:00:00 | 79.1 | 80 | 78.2 | 74.57 | 0 | | 07/13/2004
17:00:00 | 78.9 | 79.7 | 78.2 | 75.76 | 0 | | 07/13/2004
18:00:00 | 78.9 | 80 | 78.2 | 76.26 | 0 | | 07/13/2004
19:00:00 | 77.8 | 79.9 | 76.3 | 79.96 | 0 | | 07/13/2004
20:00:00 | 74.1 | 76.6 | 71.8 | 87.9 | 0 | | 07/13/2004
21:00:00 | 71.3 | 72.5 | 70.4 | 95.9 | 0 | | 07/13/2004
22:00:00 | 70.1 | 71.1 | 69.2 | 99.2 | 0 | | 07/13/2004
23:00:00 | 69.4 | 70 | 68.6 | 100 . | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/14/2004
00:00:00 | 68.4 | 69.3 | 67.6 | 100 | 0 | | 07/14/2004
01:00:00 | 68.7 | 69.4 | 67 | 100 | 0 . | | 07/14/2004
02:00:00 | 69.2 | 69.5 | 68.6 | 99.8 | 0 | | 07/14/2004
03:00:00 | 69.8 | 70.4 | 69 | 98.5 | 0.02 | | 07/14/2004
04:00:00 | 69.2 | 69.9 | 68.6 | 99.1 | 0 | | 07/14/2004
05:00:00 | 68.1 | 69 | 67.2 | 99.8 | 0.01 | | 07/14/2004
06:00:00 | 68.8 | 70.1 | 68 | 98.7 | 0 | | 07/14/2004
07:00:00 | 70.2 | 70.8 | 69.6 | 96.7 | 0 | | 07/14/2004
08:00:00 | 71.9 | 73.3 | 70.4 | 94.2 | 0 | | 07/14/2004
09:00:00 | 73.8 | 75.5 | 72.5 | 90.2 | 0 | | 07/14/2004
10:00:00 | 75.3 | 75.8 | 74.6 | 87.9 | 0 | | 07/14/2004
11:00:00 | 75.8 | 76.4 | 75 | 88.6 | 0 | | 07/14/2004
12:00:00 | 77.8 | 80.5 | 75.9 | 87.9 | 0 | | 07/14/2004
13:00:00 | 81.4 | 84.2 | 79.6 | 83.4 | 0 | | 07/14/2004
14:00:00 | 80.1 | 83.9 | 72.3 | 87 | 0.31 | | 07/14/2004
15:00:00 | 73.2 | 76 | 69 | 85.1 | 0.75 | | 07/14/2004
16:00:00 | 72.9 | 74.8 | 71.8 | 93.4 | 0.03 | | 07/14/2004
17:00:00 | 73.6 | 74.2 | 73 | 92.4 | 0 | | 07/14/2004
18:00:00 | 73.5 | 73.9 | 73 | 92.9 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/14/2004
19:00:00 | 72.7 | 73.3 | 72 | 95.9 | 0 | | 07/14/2004
20:00:00 | 72.7 | 73.5 | 72 | 95 | 0 | | 07/14/2004
21:00:00 | 71.5 | 72.7 | 70.6 | 94.1 | 0 | | 07/14/2004
22:00:00 | 69.8 | 71 | 68.8 | 95.3 | 0 | | 07/14/2004
23:00:00 | 68.6 | 69.2 | 67.8 | 99 | 0 | | 07/15/2004
00:00:00 | 67.6 | 68.8 | 66.8 | 99 | 0 | | 07/15/2004
01:00:00 | 65.8 | 67.2 | 64.5 | 99.8 | 0 | | 07/15/2004
02:00:00 | 65.7 | 66.8 | 64.4 | 99.5 | 0 | | 07/15/2004
03:00:00 | 65.2 | 66.2 | 64.2 | 98.7 | 0 | | 07/15/2004
04:00:00 | 65 | 65.5 | 64.4 | 94 | 0 | | 07/15/2004
05:00:00 | 64.3 | 65.2 | 63.1 | 94.3 | 0 | | 07/15/2004
06:00:00 | 64.3 | 66.4 | 63.2 | 96.3 | 0 | | 07/15/2004
07:00:00 | 70 | 72.6 | 66.2 | 83.5 | 0 | | 07/15/2004
08:00:00 | 73.8 | 75.3 | 72.3 | 73.41 | 0 | | 07/15/2004
09:00:00 | 76.1 | 77 | 74.9 | 67.63 | 0 | | 07/15/2004
10:00:00 | 77.3 | 78.3 | 76.3 | 63.09 | 0 | | 07/15/2004
11:00:00 | 78.2 | 79.3 | 76.8 | 59.55 | 0 | | 07/15/2004
12:00:00 | 79.6 | 80.5 | 78.1 | 56.39 | 0 | | 07/15/2004
13:00:00 | 79.9 | 81.3 | 78.4 | 53.85 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/15/2004
14:00:00 | 79.4 | 80.6 | 78.3 | 57.05 | 0 | | 07/15/2004
15:00:00 | 80.2 | 81.9 | 78.7 | 55.95 | 0 | | 07/15/2004
16:00:00 | 80 | 81.7 | 78.7 | 54.4 | 0 | | 07/15/2004
17:00:00 | 80.6 | 81.8 | 79.1 | 53.42 | 0 | | 07/15/2004
18:00:00 | 79.6 | 81.5 | 78.1 | 53.77 | 0 | | 07/15/2004
19:00:00 | 77.1 | 78.7 | 75.3 | 58.29 | 0 | | 07/15/2004
20:00:00 | 74 | 76.2 | 71.9 | 66.14 | 0 | | 07/15/2004
21:00:00 | 70.6 | 72.4 | 68 | 74.25 | 0 | | 07/15/2004
22:00:00 | 66.7 | 68.3 | 65.4 | 87.1 | 0 | | 07/15/2004
23:00:00 | 70.2 | 72.1 | 65.5 | 71.28 | 0 | | 07/16/2004
00:00:00 | 67 | 69.5 | 64.8 | 77.03 | 0 | | 07/16/2004
01:00:00 | 64.4 | 65.2 | 63.7 | 87.9 | 0 | | 07/16/2004
02:00:00 | 63 | 64.8 | 61.6 | 91.9 | 0 | | 07/16/2004
03:00:00 | 61.6 | 62.6 | 60.1 | 96.1 | 0 | | 07/16/2004
04:00:00 | 63.2 | 65.1 | 59.8 | 95.4 | 0 | | 07/16/2004
05:00:00 | 65.4 | 66.1 | 64.8 | 90.3
| 0 | | 07/16/2004
06:00:00 | 66.4 | 67.3 | 65.8 | 86.5 | 0 | | 07/16/2004
07:00:00 | 68.9 | 71.1 | 66.8 | 79.2 | 0 | | 07/16/2004
08:00:00 | 72.7 | 73.8 | 70.7 | 70.26 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/16/2004
09:00:00 | 76.2 | 78.4 | 73.2 | 63.88 | 0 | | 07/16/2004
10:00:00 | 78.7 | 80 | 77.6 | 57.69 | 0 . | | 07/16/2004
11:00:00 | 80 | 80.1 | 79.6 | 56.86 | 0 | | 07/16/2004
12:00:00 | 79.1 | 80.7 | 78.1 | 58.3 | 0 | | 07/16/2004
13:00:00 | 79.1 | 81.1 | 78.1 | 59.92 | 0 | | 07/16/2004
14:00:00 | 79.6 | 80.5 | 78.8 | 59.09 | 0 | | 07/16/2004
15:00:00 | 80.4 | 82.6 | 78.2 | 58.89 | 0 | | 07/16/2004
16:00:00 | 81.8 | 83.1 | 80.5 | 56.4 | 0 | | 07/16/2004
17:00:00 | 82.2 | 83 | 81.4 | 56.39 | 0 | | 07/16/2004
18:00:00 | 81.6 | 82.7 | 80.9 | 57.42 | 0 | | 07/16/2004
19:00:00 | 80.1 | 81.7 | 78.2 | 61.6 | 0 | | 07/16/2004
20:00:00 | 75.6 | 78.5 | 73.2 | 71.78 | 0 | | 07/16/2004
21:00:00 | 72.9 | 73.7 | 72 | 83.4 | 0 | | 07/16/2004
22:00:00 | 71.5 | 72.4 | 70.9 | 86.5 | 0 | | 07/16/2004
23:00:00 | 69.7 | 71.9 | 68.8 | 90.8 | 0 | | 07/17/2004
00:00:00 | 68.8 | 69.4 | 68.2 | 95.5 | 0 | | 07/17/2004
01:00:00 | 68 | 68.6 | 67.4 | 96.2 | 0 | | 07/17/2004
02:00:00 | 66.9 | 68.2 | 65.9 | 94.9 | 0 | | 07/17/2004
03:00:00 | 66 | 67.7 | 64.9 | 94.4 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/17/2004
04:00:00 | 64.6 | 65.7 | 63.9 | 98.2 | 0 | | 07/17/2004
05:00:00 | 64 | 64.9 | 63 | 98.7 | 0 | | 07/17/2004
06:00:00 | 64 | 65.8 | 62.7 | 99.3 | 0 | | 07/17/2004
07:00:00 | 69 | 74.4 | 65.5 | 90.9 | 0 | | 07/17/2004
08:00:00 | 75.9 | 78.1 | 73.5 | 73.03 | 0 | | 07/17/2004
09:00:00 | 78.9 | 80.5 | 77.5 | 67.48 | 0 | | 07/17/2004
10:00:00 | 81.8 | 82.7 | 79.9 | 62.15 | 0 | | 07/17/2004
11:00:00 | 83.1 | 84.2 | 81.9 | 55.45 | 0 | | 07/17/2004
12:00:00 | 84 | 84.8 | 83.2 | 55.59 | 0 | | 07/17/2004
13:00:00 | 84.5 | 85.4 | 83.6 | 56.61 | 0 | | 07/17/2004
14:00:00 | 85.1 | 85.9 | 83.9 | 53.33 | 0 | | 07/17/2004
15:00:00 | 85 | 85.9 | 84.1 | 50.57 | 0 | | 07/17/2004
16:00:00 | 83.4 | 85.1 | 81.6 | 54 | 0 | | 07/17/2004
17:00:00 | 80.6 | 82 | 80 | 57.79 | 0 | | 07/17/2004
18:00:00 | 80 | 80.9 | 78.3 | 64.67 | 0 | | 07/17/2004
19:00:00 | 77.7 | 78.7 | 75.8 | 70.35 | 0 | | 07/17/2004
20:00:00 | 75.2 | 76.4 | 73.7 | 82.5 | 0 | | 07/17/2004
21:00:00 | 74.9 | 77.2 | 73.2 | 84.9 | 0 | | 07/17/2004
22:00:00 | 75.8 | 77.2 | 74.6 | 77.06 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/17/2004
23:00:00 | 74.3 | 75.6 | 73.1 | 79.91 | 0 | | 07/18/2004
00:00:00 | 72.6 | 73.5 | 71.8 | 86.9 | 0 | | 07/18/2004
01:00:00 | 71.7 | 72.3 | 71.1 | 90.3 | 0 | | 07/18/2004
02:00:00 | 70.6 | 71.3 | 69.6 | 94.9 | 0 | | 07/18/2004
03:00:00 | 70.1 | 70.6 | 69.6 | 96.8 | 0 | | 07/18/2004
04:00:00 | 69.9 | 70.5 | 69.4 | 98.4 | 0.02 | | 07/18/2004
05:00:00 | 69.5 | 70 | 68.9 | 99.5 | 0.02 | | 07/18/2004
06:00:00 | 69.3 | 69.6 | 68.9 | 99.4 | 0 | | 07/18/2004
07:00:00 | 69.6 | 69.9 | 69.2 | 98 | 0.01 | | 07/18/2004
08:00:00 | 69.7 | 70.4 | 69.2 | 98.6 | 0.04 | | 07/18/2004
09:00:00 | 69.7 | 70.2 | 69 | 96.9 | 0.11 | | 07/18/2004
10:00:00 | 69.4 | 69.8 | 69 | 96.3 | 0.18 | | 07/18/2004
11:00:00 | 68.7 | 69.6 | 68 | 97.9 | 0.5 | | 07/18/2004
12:00:00 | 67.3 | 68.2 | 66.9 | 99 | 0.31 | | 07/18/2004
13:00:00 | 68.9 | 70.6 | 67.1 | 98.6 | 0.04 | | 07/18/2004
14:00:00 | 70.5 | 71.2 | 70 | 98.8 | 0.04 | | 07/18/2004
15:00:00 | 71 | 71.4 | 70.4 | 97.5 | 0.01 | | 07/18/2004
16:00:00 | 71.4 | 72.1 | 70.7 | 96.1 | 0 | | 07/18/2004
17:00:00 | 72.3 | 72.9 | 71.8 | 94.3 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/18/2004
18:00:00 | 71.7 | 72.6 | 70.8 | 92.7 | 0 | | 07/18/2004
19:00:00 | 70.5 | 71.1 | 69.9 | 94 | 0 | | 07/18/2004
20:00:00 | 69.8 | 70.5 | 69.4 | 95.5 | 0 | | 07/18/2004
21:00:00 | 69.4 | 69.9 | 68.8 | 96.5 | 0 | | 07/18/2004
22:00:00 | 68.7 | 69.3 | 68.2 | 97.7 | 0 | | 07/18/2004
23:00:00 | 68.1 | 68.7 | 67.7 | 97.7 | 0 | | 07/19/2004
00:00:00 | 67.7 | 68.2 | 67.4 | 98.4 | 0 | | 07/19/2004
01:00:00 | 67.8 | 68.2 | 67.4 | 97.4 | 0 | | 07/19/2004
02:00:00 | 67.4 | 67.7 | 67.1 | 97.7 | 0 | | 07/19/2004
03:00:00 | 67.4 | 67.7 | 67 | 97.8 | 0 | | 07/19/2004
04:00:00 | 67.4 | 67.7 | 67.1 | 98 | 0 | | 07/19/2004
05:00:00 | 67.3 | 67.6 | 66.9 | 98 | 0 | | 07/19/2004
06:00:00 | 67.2 | 68 | 66.8 | 97.9 | 0 | | 07/19/2004
07:00:00 | 68.3 | 69.2 | 67.4 | 95.7 | 0 | | 07/19/2004
08:00:00 | 69 | 69.6 | 68.6 | 92.8 | 0 | | 07/19/2004
09:00:00 | 70.3 | 73.5 | 69 | 88.9 | 0 | | 07/19/2004
10:00:00 | 72.4 | 73.1 | 71.8 | 83 | 0 | | 07/19/2004
11:00:00 | 74.3 | 75.5 | 72.6 | 77.41 | 0 | | 07/19/2004
12:00:00 | 76 | 77.6 | 74.6 | 73.81 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/19/2004
13:00:00 | 78.5 | 79.7 | 76.6 | 69.28 | 0 | | 07/19/2004
14:00:00 | 80.7 | 82.7 | 79.4 | 64.85 | 0 | | 07/19/2004
15:00:00 | 80 | 82.6 | 77.8 | 70.85 | 0 | | 07/19/2004
16:00:00 | 80.3 | 81.5 | 78.6 | 70.93 | 0 | | 07/19/2004
17:00:00 | 80.2 | 81.4 | 79 | 68.77 | 0 | | 07/19/2004
18:00:00 | 80.5 | 81.3 | 80 | 69.71 | 0 | | 07/19/2004
19:00:00 | 78.4 | 80.7 | 76 | 76.78 | 0 | | 07/19/2004
20:00:00 | 74.6 | 76.5 | 73.5 | 88.1 | 0 | | 07/19/2004
21:00:00 | 72.8 | 73.9 | 71.2 | 93.3 | 0 | | 07/19/2004
22:00:00 | 71.2 | 72 | 70.6 | 97.1 | 0 | | 07/19/2004
23:00:00 | 70.2 | 71 | 69.6 | 98.9 | 0 | | 07/20/2004
00:00:00 | 70 | 71.1 | 69.2 | 98.9 | 0 | | 07/20/2004
01:00:00 | 70.4 | 71.4 | 69.8 | 96 | 0 | | 07/20/2004
02:00:00 | 70.2 | 70.6 | 69.5 | 95.8 | 0 | | 07/20/2004
03:00:00 | 69 | 70.5 | 67.4 | 93.3 | 0 | | 07/20/2004
04:00:00 | 68 | 69.4 | 67 | 90.2 | 0 | | 07/20/2004
05:00:00 | 68.3 | 69.3 | 65.8 | 86.2 | 0 | | 07/20/2004
06:00:00 | 66.3 | 67.4 | 65.5 | 93.5 | 0 | | 07/20/2004
07:00:00 | 69.4 | 71.9 | 66.6 | 90.9 | 0 | | Date & Time | Average
Temp (°F) | Maximum
Temp (°F) | Minimum
Temp (°F) | Relative
Humidity
(%) | Total
Precip (in) | |------------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------| | 07/20/2004
08:00:00 | 74.2 | 76.6 | 71.9 | 79.38 | 0 | | 07/20/2004
09:00:00 | 77.3 | 79.4 | 75.8 | 72.4 | 0 | | 07/20/2004
10:00:00 | 80 | 80.9 | 78.5 | 68.48 | 0 | | 07/20/2004
11:00:00 | 80.8 | 82.3 | 79.5 | 66.7 | 0 | | 07/20/2004
12:00:00 | 82.9 | 84.5 | 81.7 | 61.09 | 0 | | 07/20/2004
13:00:00 | 83.9 | 85.4 | 82.7 | 55.91 | 0 | | 07/20/2004
14:00:00 | 83.4 | 85.1 | 80.9 | 66.25 | 0 | | 07/20/2004
15:00:00 | 83.4 | 84.7 | 81.9 | 64.91 | 0 | | 07/20/2004
16:00:00 | 83.8 | 84.5 | 82.8 | 63.73 | 0 | | 07/20/2004
17:00:00 | 83.4 | 84.5 | 81.9 | 62.8 | 0 | | 07/20/2004
18:00:00 | 82.7 | 83.3 | 81.8 | 63 | 0 | | 07/20/2004
19:00:00 | 81 | 82.5 | 78.1 | 67.93 | 0 | | 07/20/2004
20:00:00 | 75.7 | 78.1 | 73.7 | 83.8 | 0 | | 07/20/2004
21:00:00 | 72.6 | 74.4 | 71.8 | 91.2 | 0 | | 07/20/2004
22:00:00 | 70.8 | 72.2 | 69.9 | 96.3 | 0 | | 07/20/2004
23:00:00 | 70.2 | 70.8 | 69 | 98.3 | 0 | ## APPENDIX C. SOIL MOISTURE Demonstrator: HFA Date: 6/14/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | 3.5 | 3.4 | | | 6 to 12 | 24.7 | 25.1 | | | 12 to 24 | 39.5 | 39.1 | | | 24 to 36 | 35.7 | 36.3 | | | 36 to 48 | 39.9 | 40.0 | **Demonstrator: HFA** Date: 6/15/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 65.3 | 65.2 | | | 6 to 12 | 75.1 | 75.3 | | | 12 to 24 | 79.2 | 79.7 | | | 24 to 36 | 55.8 | 55.6 | | | 36 to 48 | 51.7 | 52.0 | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 22.3 | 22.2 | | | 6 to 12 | 6.5 | 6.7 | | | 12 to 24 | 19.7 | 19.4 | | | 24 to 36 | 26.4 | 26.2 | | | 36 to 48 | 52.3 | 52.1 | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | |
Demonstrator: HFA Date: 6/16/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 65.4 | 65.3 | | | 6 to 12 | 75.1 | 75.5 | | | 12 to 24 | 79.5 | 79.7 | | | 24 to 36 | 55.8 | 56.2 | | | 36 to 48 | 52.2 | 52.4 | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 22.7 | 22.6 | | | 6 to 12 | 6.9 | 7.0 | | | 12 to 24 | 19.2 | 19.0 | | | 24 to 36 | 26.5 | 26.3 | | | 36 to 48 | 52.6 | 52.9 | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | **Demonstrator: HFA** Date: 6/17/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 65.4 | 65.3 | | | 6 to 12 | 75.7 | 76.1 | | | 12 to 24 | 80.4 | 80.1 | | | 24 to 36 | 56.8 | 57.0 | | | 36 to 48 | 52.1 | 52.0 | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | w. | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 23.1 | 23.0 | | | 6 to 12 | 7.3 | 7.1 | | | 12 to 24 | 19.1 | 19.3 | | | 24 to 36 | 26.7 | 25.8 | | | 36 to 48 | 53.4 | 53.3 | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | , | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | Demonstrator: HFA Date: 6/8/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 65.2 | 65.0 | | | 6 to 12 | 76.4 | 76.3 | | | 12 to 24 | 79.7 | 80.2 | | | 24 to 36 | 57.3 | 57.5 | | | 36 to 48 | 52.1 | 52.5 | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | * | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 22.7 | 22.4 | | , | 6 to 12 | 7.3 | 7.3 | | | 12 to 24 | 19.4 | 19.5 | | | 24 to 36 | 25.9 | 26.1 | | | 36 to 48 | 53.7 | 54.1 | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | **Demonstrator: HFA** Date: 6/28/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 63.2 | 63.1 | | | 6 to 12 | 72.8 | 73.0 | | | 12 to 24 | 78.1 | 78.3 | | | 24 to 36 | 60.2 | 60.4 | | | 36 to 48 | 50.2 | 50.0 | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 20.2 | 19.9 | | | 6 to 12 | 5.8 | 6.0 | | | 12 to 24 | 19.9 | 19.9 | | | 24 to 36 | 25.0 | 25.2 | | | 36 to 48 | 56.7 | 56.7 | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | Demonstrator: HFA Date: 6/29/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 63.0 | 63.0 | | | 6 to 12 | 73.2 | 73.1 | | | 12 to 24 | 78.5 | 78.4 | | | 24 to 36 | 60.1 | 60.2 | | | 36 to 48 | 50.5 | 50.9 | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 20.1 | 20.2 | | | 6 to 12 | 5.9 | 6.3 | | | 12 to 24 | 19.8 | 20.2 | | | 24 to 36 | 25.0 | 25.5 | | | 36 to 48 | 56.9 | 57.2 | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | Demonstrator: HFA Date: 6/30/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 62.5 | 62.7 | | | 6 to 12 | 73.0 | 73.1 | | | 12 to 24 | 78.1 | 78.3 | | | 24 to 36 | 60.0 | 60.4 | | | 36 to 48 | 51.3 | 51.5 | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | * | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 20.0 | 20.2 | | | 6 to 12 | 6.0 | 6.3 | | | 12 to 24 | 20.7 | 20.9 | | | 24 to 36 | 25.6 | 26.1 | | | 36 to 48 | 57.5 | 57.7 | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | Demonstrator: HFA Date: 7/1/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 62.5 | 62.4 | | | 6 to 12 | 73.5 | 73.8 | | | 12 to 24 | 78.0 | 77.9 | | | 24 to 36 | 60.9 | 60.7 | | | 36 to 48 | 51.3 | 51.7 | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 20.0 | 20.0 | | | 6 to 12 | 6.6 | 6.8 | | | 12 to 24 | 21.5 | 22.1 | | | 24 to 36 | 26.8 | 27.0 | | | 36 to 48 | 57.2 | 57.4 | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | Demonstrator: HFA Date: 7/2/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 62.1 | 61.9 | | | 6 to 12 | 74.2 | 74.0 | | | 12 to 24 | 78.2 | 78.1 | | | 24 to 36 | 60.5 | 60.4 | | | 36 to 48 | 51.5 | 51.5 | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | . 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 19.7 | 19.6 | | | 6 to 12 | 6.9 | 6.9 | | | 12 to 24 | 22.5 | 22.4 | | | 24 to 36 | 26.8 | 26.9 | | | 36 to 48 | 57.5 | 57.9 | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | 1 | | | 36 to 48 | | | Demonstrator: HFA Date: 7/6/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 63.4 | 63.3 | | | 6 to 12 | 74.7 | 74.6 | | | 12 to 24 | 78.9 | 79.0 | | | 24 to 36 | 60.1 | 60.3 | | | 36 to 48 | 52.7 | 53.1 | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 20.9 | 20.7 | | | 6 to 12 | 7.7 | 7.9 | | | 12 to 24 | 22.9 | 23.1 | | | 24 to 36 | 26.5 | 26.3 | | | 36 to 48 | 57.6 | 57.9 | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | 1 | | | 24 to 36 | | 2 | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | } | | | 24 to 36 | | | | | 36 to 48 | | | Demonstrator: HFA Date: 7/7/04 Times: 0800 hours | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 63.8 | | | | 6 to 12 | 74.4 | | | | 12 to 24 | 79.8 | | | | 24 to 36 | 60.0 | | | | 36 to 48 | 52.5 | | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 20.5 | , | | | 6 to 12 | 7.9 | | | | 12 to 24 | 23.5 | | | | 24 to 36 | 26.0 | | | | 36 to 48 | 58.3 | | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | 8 | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | 1 | | | | 24 to 36 | | | | | 36 to 48 | | | Demonstrator: HFA Date: 7/8/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | i i | 36 to 48 | | | | Wooded Area | 0 to 6 | 15.0 | 14.9 | | | 6 to 12 | 6.0 | 6.3 | | | 12 to 24 | 5.9 | 5.8 | | | 24 to 36 | 54.8 | 54.7 | | | 36 to 48 | 56.9 | 57.2 | | Open Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | Demonstrator: HFA Date: 7/9/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Wooded Area | 0 to 6 | 14.5 | 14.4 | | | 6 to 12 | 6.0 | 6.1 | | | 12 to 24 | 5.9 | 5.9 | | | 24 to 36 | 54.4 | 54.1 | | | 36 to 48 | 57.5 | 57.3 | | Open Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | ## Demonstrator: HFA Date: 7/12/04 Times: 0800 hours | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 63.3 | | | | 6 to 12 | 74.9 | | | | 12 to 24 | 79.3 | | | | 24 to 36 | 59.5 | | | | 36 to 48 | 52.9 | | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | • | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 20.8 | | | | 6 to 12 | 8.3 | | | | 12
to 24 | 23.9 | | | | 24 to 36 | 26.5 | | | | 36 to 48 | 58.0 | | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | **Demonstrator: HFA** Date: 7/13/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 65.8 | 65.5 | | | 6 to 12 | 76.9 | 77.0 | | | 12 to 24 | 79.9 | 80.3 | | | 24 to 36 | 61.7 | 61.4 | | | 36 to 48 | 55.8 | 56.2 | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 22.6 | 22.5 | | | 6 to 12 | 9.0 | 9.2 | | | 12 to 24 | 25.8 | 26.1 | | | 24 to 36 | 27.6 | 27.7 | | | 36 to 48 | 59.7 | 60.0 | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | Demonstrator: HFA Date: 7/14/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 65.3 | 65.2 | | | 6 to 12 | 77.2 | 77.2 | | | 12 to 24 | 80.0 | 80.4 | | | 24 to 36 | 61.5 | 61.7 | | | 36 to 48 | 56.3 | 56.5 | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | . 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 22.3 | 22.2 | | | 6 to 12 | 9.0 | 9.0 | | | 12 to 24 | 26.2 | 26.3 | | | 24 to 36 | 27.9 | 28.0 | | | 36 to 48 | 60.2 | 60.4 | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | Demonstrator: HFA Date: 7/15/04 | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | | 0 to 6 | 65.5 | 65.4 | | | 6 to 12 | 77.7 | 77.5 | | | 12 to 24 | 80.0 | 79.5 | | | 24 to 36 | 62.6 | 62.9 | | Wet Area | 36 to 48 | 56.9 | 57.1 | | | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | * | 24 to 36 | | | | Wooded Area | 36 to 48 | | | | | 0 to 6 | 22.0 | 22.0 | | | 6 to 12 | 9.3 | 9.2 | | | 12 to 24 | 26.5 | 26.4 | | | 24 to 36 | 28.4 | 28.5 | | Open Area | 36 to 48 | 60.0 | 59.7 | | | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | Calibration Lanes | 36 to 48 | | | | 4 | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | Blind Grid/Moguls | 36 to 48 | | | Demonstrator: HFA Date: 7/16/04 Times: 0800 hours | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | 65.0 | | | | 6 to 12 | 77.2 | | | | 12 to 24 | 79.7 | | | | 24 to 36 | 62.8 | | | | 36 to 48 | 57.6 | | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | 21.8 | , | | | 6 to 12 | 9.4 | | | | 12 to 24 | 26.0 | | | , | 24 to 36 | 28.1 | | | | 36 to 48 | 59.9 | | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | Demonstrator: HFA Date: 6/15/04 Times: 1130 hours, 1530 hours | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | 4.6 | 4.9 | | | 6 to 12 | 4.5 | 4.2 | | | 12 to 24 | 7.8 | 7.2 | | | 24 to 36 | 37.7 | 37.1 | | | 36 to 48 | 39.5 | 39.6 | Demonstrator: HFA Date: 7/20//04 Times: 0800 hours | Probe Location: | Layer, in. | AM Reading, % | PM Reading, % | |------------------------|------------|---------------|---------------| | Wet Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Wooded Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Open Area | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Calibration Lanes | 0 to 6 | | | | | 6 to 12 | | | | | 12 to 24 | | | | | 24 to 36 | | | | | 36 to 48 | | | | Blind Grid/Moguls | 0 to 6 | 4.4 | | | | 6 to 12 | 4.7 | 1 | | | 12 to 24 | 7.3 | 1 | | | 24 to 36 | 37.0 |] | | | 36 to 48 | 39.8 | 1 | ## APPENDIX D. DAILY ACTIVITY LOGS | Suc | DDY | DDY | YOU | ODY | YOU | DDY | ODY | DDY | DDY | DDY | DDY | ODY | |----------------------------------|-------------------------|-------------------|----------------------------------|------------------|-------------------------------|-------------------------|-------------------|-----------------------------------|---------------------|-------------------------------|-------------------------------|-------------------------------| | onditie | YOUND Y | Y MUDDY | MUDDY | MUDDY | MOI | MUDDY | MUDDY | MUDDY | MUDDY | MUI | MUI | MUI | | Field Conditions | | SUNNY | SUNNY | SUNNS | SUNNY | SUNNS | SUNNY | SUNNY | SUNNY | SUNNY | SUNNY | SUNNY | | Pattern | LINEAR | LINEAR | LINEAR | LINEAR SUNNY | LINEAR | Track
Method=Other
Explain | SCHONSTEDT | SCHONSTEDT LINEAR | SCHONSTEDT LINEAR | SCHONSTEDT | SCHONSTEDT LINEAR SUNNY MUDDY | SCHONSTEDT LINEAR SUNNY | SCHONSTEDT LINEAR | SCHONSTEDT | SCHONSTEDT LINEAR | SCHONSTEDT LINEAR SUNNY MUDDY | SCHONSTEDT LINEAR SUNNY MUDDY | SCHONSTEDT LINEAR SUNNY MUDDY | | Track
Method | NA | Operational Status
- Comments | INITIAL MOBILIZATION | COLLECT DATA | CHANGE BATTERIES | BREAK/LUNCH | COLLECT DATA | BREAK/LUNCH | COLLECT DATA | BREAKDOWN
END OF
ACTIVITIES | SET UP GRID | BREAK/LUNCH | COLLECT DATA | MOVE STRING
ALONG GRID | | OP
Stat Code | _ | 4 | 7 | N. | 4 | .S. | 4 | <mark>.c.</mark> | 8 | S | 4 | 3 | | Operational
Status | INITIAL
MOBILIZATION | COLLECT DATA | DOWNTIME
MAINTENANCE
CHECK | BREAK/LUNCH | COLLECT DATA | BREAK/LUNCH | COLLECT DATA | DAILY START
STOP | DAILY START
STOP | BREAK/LUNCH | COLLECT DATA | DAILY START
STOP | | Duration, | 15 | N. | 45 | 15 | 75 | 09 | 105 | 35 | 160 | 45 | 09 | 10 | | Status
Stop I | 925 | 930 | 1015 | 1030 | 1145 | 1245 | 1430 | 1505 | 1145 | 1230 | 1330 | 1340 | | Status
Start
Time | 910 | 925 | <mark>930</mark> | 1015 | 1030 | 1145 | 1245 | 1430 | 905 | 1145 | 1230 | 1330 | | Area Tested | CALIBRATION LANE | BLIND TEST GRID | BLIND TEST GRID | OPEN FIELD | OPEN FIELD | OPEN FIELD | OPEN FIELD | | No.
of People | 2 | 2 | 2 | 2 | 2 | 5 | 2 | <mark>.23</mark> | 2 | 2 | 2 | 2 | | Date | 6/14/04 | 6/14/04 | 6/14/04 | 6/14/04 | 6/14/04 | 6/14/04 | 6/14/04 | 6/14/04 | 6/15/04 | 6/15/04 | 6/15/04 | 6/15/04 | Note: Activities pertinent to this specific demonstration are indicated in highlighted text. | | | | Chatus | Chatan | | | | | | | | | | |---------|-----------|-------------|--------|--------|-----------|---------------------|-----------|-----------------------------------|--------|--------------------------------|---------|------------------|---------| | | No. | | | Stop I | Juration, | Operational | OP | Operational Status Track | Track | Method=Other | | | | | Date | of People | Area Tested | - 1 | Time | Time min | Status | Stat Code | - Comments | Method | Explain | Pattern | Field Conditions | ditions | | 6/15/04 | 2 | OPEN FIELD | | 1420 | 40 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | AUDDY | | 6/15/04 | 2 | OPEN FIELD | 1420 | 1440 | 20 | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 6/15/04 | 2 | OPEN FIELD | 1440 | 1500 | 20 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 6/15/04 | 2 | OPEN FIELD | 1500 | 1515 | 15 | DAILY START
STOP | 3 | BREAKDOWN
END OF
ACTIVITIES | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 6/16/04 | 2 | OPEN FIELD | 745 | 800 | 15 | DAILY START
STOP | 3 | START OF
OPERATIONS | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDY | AUDDY | | 6/16/04 | 2 | OPEN FIELD | 800 | 840 | 40 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDY | AUDDY | | 6/16/04 | 2 | OPEN FIELD | 840 | 850 | 10 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDY | AUDDY | | 6/16/04 | 2 | OPEN FIELD | 850 | 930 | 40 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDY | MUDDY | | 6/16/04 | 2 | OPEN FIELD | 930 | 935 | 35 1 | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDY | (UDDY | | 6/16/04 | 2 | OPEN FIELD | 935 | 1040 | 55 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDYA | MODDY | | 6/16/04 | 2 | OPEN FIELD | 1040 | 1115 | 35 C | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDYA | TUDDY | | 6/16/04 | 2 | OPEN FIELD | 1115 | 1145 | 30 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDYA | TUDDY | | | | | Status | Status | | | | | | Track | | | | |---------|-----|------------|--------|--------|----------------|---------------------|-----------|-----------------------------------|-------|--------------------------------|--------
--------------|--------------| | | No. | E | | Stop | Stop Duration, | O | OP | Operational Status Track | Track | Me | : | | | | 6/16/04 | 2 2 | OPEN FIELD | 1145 | 1220 | 35 | BREAK/LUNCH | Stat Code | - Comments BREAK/LUNCH | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDY MUDDY | AUDDY | | 6/16/04 | 2 | OPEN FIELD | 1220 | 1310 | 50 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDYN | AUDDY | | 6/16/04 | 2 | OPEN FIELD | 1310 | 1330 | 20 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDY | AUDDY | | 6/16/04 | 2 | OPEN FIELD | 1330 | 1400 | 30 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDY | AUDDY | | 6/16/04 | 2 | OPEN FIELD | 1400 | 1415 | 15 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDY | MUDDY | | 6/16/04 | 2 | OPEN FIELD | 1415 | 1430 | 15 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDYN | AUDDY | | 6/16/04 | 2 | OPEN FIELD | 1430 | 1440 | 10 | DAILY START
STOP | 3 | BREAKDOWN
END OF
ACTIVITIES | NA | SCHONSTEDT LINEAR CLOUDY MUDDY | LINEAR | CLOUDY | AUDDY | | 6/17/04 | 2 | OPEN FIELD | 715 | 800 | 45 | DAILY START
STOP | κ | START OF
OPERATIONS | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MODDY | | 6/17/04 | 2 | OPEN FIELD | 800 | 850 | 50 | DAILY START
STOP | 8 | SET UP GRID | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | (UDDY | | 6/17/04 | 2 | OPEN FIELD | 850 | 006 | 10 | BREAK/LUNCH | S | BREAK/LUNCH | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY N | TUDDY | | 6/17/04 | 2 | OPEN FIELD | 006 | 1015 | 75 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY IN | TUDDY | | 6/17/04 | 2 | OPEN FIELD | 1015 | 1025 | 10 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY N | TUDDY | | | tions | MUDDY | YDDY | MUDDY | MUDDY | JDDY | JDDY | MUDDY | MUDDY | MUDDY | MUDDY | DDY | |--------------------------|--------------------------------------|-------------------|---------------------------|-------------------|-------------------|---------------------------|-------------------------------|---------------------------|-------------------|-------------|---------------------|-------------------------------| | | Field Conditions SUNNY MUDDY | TY MC | SUNNY MUDDY | | | SUNNY MUDDY | IY MC | | | | | Y MU | | | | SUNNY | | SUNNY | SUNNY | SUNN | SUNN | SUNNY | SUNNY | SUNNY | SUNNY | SUNN | | | Pattern
LINEAR | LINEAR | Me | Explain Pattern
SCHONSTEDT LINEAR | SCHONSTEDT LINEAR SUNNY MUDDY | SCHONSTEDT LINEAR | SCHONSTEDT LINEAR | SCHONSTEDT | SCHONSTEDT LINEAR | SCHONSTEDT LINEAR SUNNY MUDDY | | Track | Method | NA | tus | - Comments BREAK/LUNCH | COLLECT DATA | MOVE STRING
ALONG GRID | BREAK/LUNCH | COLLECT DATA | MOVE STRING
ALONG GRID | COLLECT DATA | MOVE STRING
ALONG GRID | COLLECT DATA | BREAK/LUNCH | SET UP GRID | BREAKDOWN | | OP | Stat Code | 4 | 3 | 5 | 4 | 3 | 4 | 3 | 4 | 5 | 6 | 3 | | Operational | Status
BREAK/LUNCH | COLLECT DATA | DAILY START
STOP | BREAK/LUNCH | COLLECT DATA | DAILY START
STOP | COLLECT DATA | DAILY START
STOP | COLLECT DATA | BREAK/LUNCH | DAILY START
STOP | DAILY START | | Status
Stop Duration, | min
15 | 50 05 | 10 | 45 | 55 0 | 15 | 15 0 | 5 | 15 0 | 5 1 | 45 | 15 | | Status
Stop I | Time 1040 | 1130 | 1140 | 1225 | 1320 | 1335 | 1350 | 1355 | 1410 | 1415 | 1500 | 1515 | | | Time
1025 | 1040 | 1130 | 1140 | 1225 | 1320 | 1335 | 1350 | 1355 | 1410 | 1415 | 1500 | | E | Area Tested
OPEN FIELD | OPEN | No. | of People | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | | , | Date
6/17/04 | 6/17/04 | 6/17/04 | 6/17/04 | 6/17/04 | 6/17/04 | 6/17/04 | 6/17/04 | 6/17/04 | 6/17/04 | 6/17/04 | 6/17/04 | | , | |--| | No. Start Stop Duration, of People Area Tested Time Time min | | OPEN FIELD 715 | | 2 OPEN FIELD 720 830 70 COLLECT DATA | | 2 OPEN FIELD 830 1000 90 | | 2 OPEN FIELD 1000 1010 10 | | 2 OPEN FIELD 1010 1023 13 COLLECT DATA | | 2 OPEN FIELD 1023 1031 8 | | 2 OPEN FIELD 1031 1103 32 COLLECT DATA | | 2 OPEN FIELD 1103 1112 9 | | 2 OPEN FIELD 1112 1123 11 BREAK/LUNCH | | 2 OPEN FIELD 1123 1148 25 COLLECT DATA | | 2 OPEN FIELD 1148 1215 27 BREAK/LUNCH | | 2 OPEN FIELD 1215 1300 45 COLLECT DATA | | | | | Status | Status | | | | | | Track | | | | |---------|-----------|-------------|--------|--------|-----------|---------------------|-----------|-----------------------------------|--------|-------------------------------|---------|------------------|----------| | | No. | | | Stop I | Juration, | Operational | OP | Operational Status Track | Track | Met | | | | | Date | of People | Area Tested | | Time | min | | Stat Code | - Comments | Method | | Pattern | Field Conditions | nditions | | 6/18/04 | 2 | OPEN FIELD | 1300 | 1330 | 1330 30 | DAILY START
STOP | ю | BREAKDOWN
END OF
ACTIVITIES | NA | SCHONSTEDT LINEAR | LINEAR | | MUDDY | | 6/28/04 | 2 | OPEN FIELD | 750 | 930 | 100 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 6/28/04 | 2 | OPEN FIELD | 930 | 945 | 15 | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 6/28/04 | 2 | OPEN FIELD | 945 | 1100 | 75 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 6/28/04 | 2 | OPEN FIELD | 1100 | 1110 | 10 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 6/28/04 | 2 | OPEN FIELD | 1110 | 1200 | 50 05 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 6/28/04 | 2 | OPEN FIELD | 1200 | 1240 | 40 | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 6/28/04 | 2 | OPEN FIELD | 1240 | 1305 | 25 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 6/28/04 | 2 | OPEN FIELD | 1305 | 1315 | 10 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 6/28/04 | 2 | OPEN FIELD | 1315 | 1445 | 06 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | | SUNNY MUDDY | MUDDY | | 6/28/04 | 2 | OPEN FIELD | 1445 | 1455 | 10 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 6/28/04 | 2 | OPEN FIELD | 1455 | 1515 | 20 | DAILY START
STOP | 3 | BREAKDOWN
END OF
ACTIVITIES | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | | Status
Start | | Status
Stop Duratio | uratio | n, | Operational | OP | Operational Status Track | Track | Track
Method=Other | | | | |--------------------------------|-----------------|----------|------------------------|--------|----------|---------------------|-----------|-----------------------------------|--------|-------------------------------|---------|------------------|----------| | Time Time min | Time Time min | Time min | Time min | min | | Status | Stat Code | - Comments | Method | | Pattern | Field Conditions | nditions | | 730 10 | 720 730 10 | 730 10 | 730 10 DA | 10 DA | DA | DAILY START
STOP | ю | START OF
OPERATIONS | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 2 OPEN FIELD 730 915 105 COL | 730 915 105 | 915 105 | 105 | | COL | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 2 OPEN FIELD 915 935 20 BR | 915 935 20 | 935 20 | 20 | | BR | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 2 OPEN FIELD 935 1005 30 DA | 935 1005 30 | 1005 30 | 30 | | D/ | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 2 OPEN FIELD 1005 1145 100 COI | 1005 1145 100 | 1145 100 | 45 100 | | <u> </u> | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD 1145 1155 10 DAI | 1145 1155 10 | 1155 10 | 55 10 | | DA | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD 1155 1250 55 BRE | 1155 1250 55 | 1250 55 | 55 | | BRE | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 2 OPEN FIELD 1250 1415 85 COLI | 1250 1415 85 | 1415 85 | 85 | | COLI | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD 1415 1450 35 DAII | 1415 1450 35 | 1450 35 | 50 35 | | DAI | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD 1450 1505 15 COL. | 1450 1505 15 | 1505 15 | 15 | | COLI | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD 1505 1515 10 DAII | 1505 1515 10 | 1515 10 | 10 | | DAII | DAILY START
STOP | 3 | BREAKDOWN
END OF
ACTIVITIES | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD 730 740 10 DAI | 730 740 10 | 740 10 | 10 | | DA | DAILY START
STOP | 3 | START OF
OPERATIONS | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | Date OPEN FIELD Table of People (Page) Table of People (Page) Area Tested of People (Page) Table of People (Page) Area Tested of People (Page) Table of People (Page) Table of People (Page) Area Tested of People (Page) Table | | | | Status | Status | | | | | | Track | | | |
--|---------|-----------|----------------------------|--------|--------|---------------|---------------------|-----------|---------------------------|--------|------------|-------------------|-------------|-------| | of Propre Area Jested Jime Iline Iline Iline Iline Iline Iline Iline Iline Jant Code - Comments Method Explain Patient 2 OPEN FIELD 800 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 810 825 15 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 840 15 DALLY START 3 MOVE STRING NA SCHONSTEDT LINEAR 2 OPEN FIELD 840 90 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 840 90 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 930 955 25 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 2 OPEN FIELD 930 955 25 | , | No. | E | | Stop | Ouration, | Operational | OP | Operational Status | Track | | | | | | 2 OPEN FIELD 810 10 DALLY START 3 MOVE STRING NA SCHONSTEDT LINEAR 2 OPEN FIELD 810 825 15 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 840 900 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 840 900 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 930 30 DAILY START 3 SET UP GRID NA SCHONSTEDT LINEAR 2 OPEN FIELD 930 35 25 BREAK/LUNCH 5 BREAK/LUNCH NA SCHONSTEDT LINEAR 2 OPEN FIELD 930 955 25 BREAK/LUNCH NA SCHONSTEDT LINEAR 2 OPEN FIELD 1015 105 10 10 COLLECT DATA A | 6/30/04 | or reopie | Area I ested
OPEN FIELD | | 800 | min 20 | COLLECT DATA | Stat Code | | Method | | Pattern
LINEAR | SUNNY MUDDY | MUDDY | | 2 OPEN FIELD 800 810 10 DALLY START 3 MOVE STRING
ALONG GRID NA SCHONSTEDT
SCHONSTEDT
LINEAR LINEAR 2 OPEN FIELD 825 15 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT
SCHONSTEDT LINEAR 2 OPEN FIELD 825 840 15 DALLY START 3 MOVE STRING
ALONG GRID NA SCHONSTEDT LINEAR 2 OPEN FIELD 900 930 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 930 935 25 BREAK/LUNCH 5 BREAK/LUNCH NA SCHONSTEDT LINEAR 2 OPEN FIELD 930 955 25 BREAK/LUNCH 5 BREAK/LUNCH 8 COLLECT DATA A | - | | | | | | | | | | | | | | | 2 OPEN FIELD 825 840 15 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 840 90 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 900 930 30 DALLY START 3 SET UP GRID NA SCHONSTEDT LINEAR 2 OPEN FIELD 930 955 25 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 2 OPEN FIELD 930 955 25 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 2 OPEN FIELD 950 1010 15 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 1015 1025 10 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 1025 1030 | 6/30/04 | 2 | OPEN FIELD | 800 | 810 | 10 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD 840 15 DAILY START 3 MOVE STRING
ALONG GRID NA SCHONSTEDT
STOP LINEAR 2 OPEN FIELD 900 930 30 DAILY START 3 SET UP GRID NA SCHONSTEDT LINEAR 2 OPEN FIELD 930 955 25 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 2 OPEN FIELD 955 1010 15 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 955 1010 15 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 1010 1015 15 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 1015 1025 10 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 1030 | 6/30/04 | 2 | OPEN FIELD | 810 | 825 | | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD 840 900 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 930 936 30 DALLY START 3 SET UP GRID NA SCHONSTEDT LINEAR 2 OPEN FIELD 930 955 25 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 2 OPEN FIELD 1010 15 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 1015 1025 10 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 1015 1025 10 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 1025 1030 5 DAILY START 3 MOVE STRING NA SCHONSTEDT LINEAR 2 OPEN FIELD 1030 1040 10 COLLECT DATA 4 COLLECT DATA NA SC | 6/30/04 | 2 | OPEN FIELD | 825 | 840 | 15 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD 990 930 30 DAILY START 3 SET UP GRID NA SCHONSTEDT LINEAR 2 OPEN FIELD 955 1010 15 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 1010 1015 5 DAILY START 3 MOVE STRING NA SCHONSTEDT LINEAR 2 OPEN FIELD 1015 1025 10 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 1015 1025 10 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 1025 1030 5 DAILY START 3 MOVE STRING NA SCHONSTEDT LINEAR 2 OPEN FIELD 1030 1040 10 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 2 OPEN FIELD 1040 <t< td=""><td>6/30/04</td><td>2</td><td>OPEN FIELD</td><td>840</td><td>006</td><td></td><td>COLLECT DATA</td><td>4</td><td>COLLECT DATA</td><td>NA</td><td>SCHONSTEDT</td><td>LINEAR</td><td>SUNNY</td><td>MUDDY</td></t<> | 6/30/04 | 2 | OPEN FIELD | 840 | 006 | | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD 930 955 25 BREAK/LUNCH 5 BREAK/LUNCH NA 2 OPEN FIELD 1010 1015 15 COLLECT DATA 4 COLLECT DATA NA 2 OPEN FIELD 1016 1015 1015 1025 10 COLLECT DATA 4 COLLECT DATA NA 2 OPEN FIELD 1025 1030 5 DAILY START 3 MOVE STRING NA 2 OPEN FIELD 1025 1030 5 DAILY START 3 MOVE STRING NA 2 OPEN FIELD 1030 1040 10 COLLECT DATA 4 COLLECT DATA NA | 6/30/04 | 2 | OPEN FIELD | 006 | 930 | 30 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT | LINEAR | SUNNY MUDDY | MUDDY | | 2 OPEN FIELD 955 1010 15 COLLECT DATA 4 COLLECT DATA NA 2 OPEN FIELD 1010 1015 5 DAILY START 3 MOVE STRING NA 2 OPEN FIELD 1015 1025 103 5 DAILY START 3 MOVE STRING NA 2 OPEN FIELD 1025 1030 5 DAILY START 3 MOVE STRING NA 2 OPEN FIELD 1030 1040 10 COLLECT DATA 4 COLLECT DATA NA | 6/30/04 | 2 | OPEN FIELD | 930 | 955 | | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD 1010 1015 5 DAILY START 3 MOVE STRING ALONG GRID NA 2 OPEN FIELD 1015 1025 10 COLLECT DATA 4 COLLECT DATA NA 2 OPEN FIELD 1025 1030 5 DAILY START 3 MOVE STRING NA 2 OPEN FIELD 1030 1040 10 COLLECT DATA 4 COLLECT DATA NA | 6/30/04 | 2 | OPEN FIELD | 955 | 1010 | | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD 1015 1025 10 COLLECT DATA 4 COLLECT DATA NA 2 OPEN FIELD 1025 1030 5 DAILY START 3 MOVE STRING NA 2 OPEN FIELD 1030 1040 10 COLLECT DATA 4 COLLECT DATA NA | 6/30/04 | 2 | OPEN FIELD | 1010 | | 2 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD 1025 1030 5 DAILY START 3 MOVE STRING NA STOP ALONG GRID ALONG GRID A COLLECT DATA 4 COLLECT DATA NA STOP ALONG GRID A COLLECT DATA A COLLECT DATA NA STOP ALONG GRID A GRI | 6/30/04 | 2 | OPEN FIELD | 1015 | 1025 | | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD 1030 1040 10 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR | 6/30/04 | 2 | OPEN FIELD | | 1030 | 5 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | | 6/30/04 | 2 | OPEN FIELD | | 1040 | | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | | | | Status | Status | | | | | | Track | | | | |---------|-----------|-------------|--------|--------|----------------|---------------------|-----------|---------------------------|--------|-------------------------------|---------|--------------------------|---------| | | No. | | | Stop 1 | Stop Duration, | Operational | OP | Operational Status Track | Track | Met | | | | | Date | of People | Area Tested | Time | Time | min | Status | Stat Code | | Method | Explain | Pattern | Pattern Field Conditions | ditions | | 6/30/04 | 2 | OPEN FIELD | | 1045 | 5 | DAILY START
STOP | е | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 6/30/04 | 2 | OPEN FIELD | 1045 | 1105 | 20 0 | COLLECT DATA | 4 | COLLECT DATA | NA |
SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 6/30/04 | 2 | OPEN FIELD | 1105 | 1125 | 20 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 6/30/04 | 2 | OPEN FIELD | 1125 | 1135 | 10 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 6/30/04 | 2 | OPEN FIELD | 1135 | 1150 | 15 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT LINEAR SUNNY | LINEAR | SUNNY | MUDDY | | 6/30/04 | 2 | OPEN FIELD | 1150 | 1240 | 50 | BREAK/LUNCH | S | BREAK/LUNCH | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 6/30/04 | 2 | OPEN FIELD | 1240 | 1330 | 50 05 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 6/30/04 | 2 | OPEN FIELD | 1330 | 1340 | 10 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 6/30/04 | 2 | OPEN FIELD | 1340 | 1430 | 20 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT] | LINEAR | SUNNY | MUDDY | | 6/30/04 | 2 | OPEN FIELD | 1430 | 1440 | 10 | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 6/30/04 | 2 | OPEN FIELD | 1440 | 1455 | 15 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY | LINEAR | SUNNY | MUDDY | | 6/30/04 | 2 | OPEN FIELD | 1455 | 1505 | 10 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | | IS | DY | DY | OY | OY | OY | OY | J.C | λC | λC | J. | λC |)Y | |--------------------------|------------------|-----------------------------------|------------------------|-------------------|-------------------|---------------------|-------------------|-------------------------|---------------------------|-------------------|---------------------------|-------------------------------|-------------------------------| | | ndition | MUDI | MUDI | MUDDY | MUDDY | MUDDY | MUDI | MUDDY | MUDDY | MUDDY | MUDDY | MUDI | MUDI | | | Field Conditions | SUNNY MUDDY | SUNNY MUDDY | SUNNY | SUNNY | SUNNY | SUNNY MUDDY | SUNNY | SUNNY | SUNNY | SUNNY | SUNNY | SUNNY | | | Pattern | LINEAR | Track
Method=Other | | SCHONSTEDT LINEAR SUNNY | SCHONSTEDT LINEAR | SCHONSTEDT LINEAR | SCHONSTEDT | SCHONSTEDT LINEAR SUNNY MUDDY | SCHONSTEDT LINEAR SUNNY MUDDY | | Track | Method | NA | Operational Status Track | - Comments | BREAKDOWN
END OF
ACTIVITIES | START OF
OPERATIONS | COLLECT DATA | BREAK/LUNCH | SET UP GRID | BREAK/LUNCH | COLLECT DATA | MOVE STRING
ALONG GRID | COLLECT DATA | MOVE STRING
ALONG GRID | COLLECT DATA | BREAK/LUNCH | | OP | Stat Code | 3 | 3 | 4 | 5 | 8 | 5 | 4 | c. | 4 | 3 | 4 | 5 | | Operational | Status | DAILY START
STOP | DAILY START
STOP | COLLECT DATA | BREAK/LUNCH | DAILY START
STOP | BREAK/LUNCH | COLLECT DATA | DAILY START
STOP | COLLECT DATA | DAILY START
STOP | COLLECT DATA | BREAK/LUNCH | | Status
Stop Duration, | min | 10 | 10 | 75 | 25 | 35 | 30 | 30 | 10 | 30 | 2 | 20 0 | 09 | | Status
Stop | Time | 1515 | 730 | 845 | 910 | 945 | 1015 | 1045 | 1055 | 1125 | 1130 | 1150 | 1250 | | Status | Time | 1505 | 720 | 730 | 845 | 910 | 945 | 1015 | 1045 | 1055 | 1125 | 1130 | 1150 | | | Area Tested | OPEN FIELD | No. | of People | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | Date | 6/30/04 | 7/1/04 | 7/1/04 | 7/1/04 | 7/1/04 | 7/1/04 | 7/1/04 | 7/1/04 | 7/1/04 | 7/1/04 | 7/1/04 | 7/1/04 | | | | | | Status | | | | | | Track | | | | |-----------------|-------------|------|------|--------|----------------|---------------------|-----------------|-----------------------------------|-------|-------------------|---------|------------------|---------| | No. Area Tested | Area Tested | | | Stop I | Stop Duration, | Operational | OP
Stat Code | Operational Status Track | Track | Method=Other | Pottorn | Field Conditions | ditions | | | OPEN FIELD | | 1250 | 1415 | 85 | OCI | 4 | Y | NA | SCHONSTEDT LINEAR | LINEAR | | MUDDY | | 2 OPEN FIELD | OPEN FIELD | | 1415 | 1445 | 30 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD | OPEN FIELD | | 1445 | 1500 | 15 0 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD | OPEN FIELD | | 1500 | 1510 | 10 | DAILY START
STOP | 3 | BREAKDOWN
END OF
ACTIVITIES | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD | OPEN FIELD | III. | 725 | 745 | 20 | DAILY START
STOP | 3 | START OF
OPERATIONS | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD | OPEN FIELD | | 745 | 830 | 45 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 2 OPEN FIELD | OPEN FIELD | | 830 | 845 | 15 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD | OPEN FIELD | | 845 | 1000 | 75 0 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD | OPEN FIELD | | 1000 | 1015 | 15 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 2 OPEN FIELD | OPEN FIELD | | 1015 | 1030 | 15 0 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 2 OPEN FIELD | OPEN FIELD | | 1030 | 1105 | 35 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 2 OPEN FIELD | OPEN FIELD | | 1105 | 1205 | 09 | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | | | 1 | | 1 | | | | | 1 | | | | | | | | | Status | Status | | | | | | Track | | | | |--------|------------------|-------------|---------------|--------|----------------|---------------------|-----------------|--|-----------------|-------------------------------|---------|------------------|---------| | | No.
of People | Area Tested | Start
Time | Stop I | Stop Duration, | Operational Status | OP
Stat Code | Operational Status Track - Comments Method | Track
Method | Method=Other
Explain | Pattern | Field Conditions | ditions | | 7/2/04 | 2 | OPEN FIELD | | 1345 | 100 | OLL | 4 | Z | NA | SCHONSTEDT LINEAR | LINEAR | | MUDDY | | 7/2/04 | 2 | OPEN FIELD | 1345 | 1400 | 15 | DAILY START
STOP | | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 7/2/04 | 2 | OPEN FIELD | 1400 | 1415 | 15 | DAILY START
STOP | 3 | BREAKDOWN
END OF
ACTIVITIES | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/6/04 | 2 | OPEN FIELD | 730 | 745 | 15 | DAILY START
STOP | 3 | START OF
OPERATIONS | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/6/04 | 2 | OPEN FIELD | 745 | 915 | 06 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/6/04 | 2 | OPEN FIELD | 915 | 930 | 15 | DAILY START
STOP | 8 | SET UP GRID | NA | SCHONSTEDT LINEAR SUNNY | LINEAR | SUNNY | MUDDY | | 7/6/04 | 2 | OPEN FIELD | 930 | 950 | 20 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/6/04 | 2 | OPEN FIELD | 950 | 1015 | 25 | DAILY START
STOP | 8 | SET UP GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/6/04 | 2 | OPEN FIELD | 1015 | 1050 | 35 | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/6/04 | 2 | OPEN FIELD | 1050 | 1220 | 06 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/6/04 | 2 | OPEN FIELD | 1220 | 1315 | 55 | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/6/04 | 2 | OPEN FIELD | 1315 | 1410 | 55 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | | MUDDY |--------------------------|-----------------------------------|-------------------|-----------------------------------|------------------------|-------------------------------|-------------------------------|---------------------------|-------------------|---------------------------|-------------------------------|-------------------------------|-------------------------------| | į | SUNNY MUDDY | SUNNY MUDDY | SUNNY MUDDY | SUNNY MUDDY | SUNNY | SUNNY | SUNNY MUDDY | SUNNY MUDDY | SUNNY MUDDY | SUNNY | SUNNY | SUNNY | | , | LINEAR | Me | SCHONSTEDT LINEAR SUNNY MUDDY | SCHONSTEDT LINEAR SUNNY MUDDY | SCHONSTEDT LINEAR | SCHONSTEDT LINEAR | SCHONSTEDT LINEAR | SCHONSTEDT LINEAR SUNNY MUDDY | SCHONSTEDT LINEAR SUNNY MUDDY | SCHONSTEDT LINEAR SUNNY MUDDY | | Track | NA | Operational Status Track | - Comments MOVE STRING ALONG GRID | COLLECT DATA | BREAKDOWN
END OF
ACTIVITIES | START OF
OPERATIONS | SET UP GRID | COLLECT DATA | MOVE STRING
ALONG GRID | COLLECT DATA | MOVE STRING
ALONG GRID | BREAK/LUNCH | COLLECT DATA | MOVE STRING | | OP | Star Code | 4 | 8 | 3 | 8 | 4 | 33 | 4 | 3 | 5 | 4 | 3 | | 0 | STOP | COLLECT DATA | DAILY START
STOP | DAILY START
STOP | DAILY START
STOP | COLLECT DATA | DAILY START
STOP | COLLECT DATA | DAILY START
STOP | BREAK/LUNCH | COLLECT DATA | DAILYSTART | | Duration, | 11me min
1415 5 | 55 (| 10 | 10 | 35 | 45 (| 15 | 09 | 15 | S | 40 | ٧ | | Status
Stop | 1415 | 1510 | 1520 | 740 | 815 | 006 | 915 | 1015 | 1030 | 1035 | 1115 | 1120 | | | 1410 | 1415 | 1510 | 730 | 740 | 815 | 006 | 915 | 1015 | 1030 | 1035 | 1115 | | į | Area lested OPEN FIELD | | No. | of People
2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | , | Date 7/6/04 | 7/6/04 | 7/6/04 | 7/7/04 | 7/7/04 | 7/7/04 | 7/7/04 | 7/7/04 | 7/7/04 | 7/7/04 | 7/7/04 | 7/7/04 | | | No. | | Status | Status
Stop D | Status
Ston Duration. | Operational | OP | Operational Status Track | Track | Track
Method=Other | | | | |--------|-----------|-------------|--------|------------------|--------------------------|---------------------|-----------
-----------------------------------|--------|-------------------------|---------|------------------|---------| | Date | of People | Area Tested | | Time | min | Status | Stat Code | - Comments | Method | | Pattern | Field Conditions | ditions | | 7/7/04 | 2 | OPEN FIELD | 1120 | 1210 | 20 05 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 7/7/04 | 2 | OPEN FIELD | 1210 | 1225 | 15 | DAILY START
STOP | 8 | BREAKDOWN
END OF
ACTIVITIES | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/8/04 | 2 | WOODS | 800 | 810 | 10 | DAILY START
STOP | 3 | START OF
OPERATIONS | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/8/04 | 2 | WOODS | 810 | 915 | 75 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/8/04 | 2 | WOODS | 915 | 930 | 15 1 | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/8/04 | 2 | WOODS | 930 | 1000 | 30 0 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/8/04 | 2 | WOODS | 1000 | 1020 | 20 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 7/8/04 | 2 | WOODS | 1020 | 1100 | 40 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/8/04 | 2 | WOODS | 1100 | 1120 | 20 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 7/8/04 | 2 | WOODS | 1120 | 1205 | 45 0 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 7/8/04 | 2 | WOODS | 1205 | 1250 | 45 | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR SUNNY | LINEAR | SUNNY | MUDDY | | 7/8/04 | 2 | WOODS | 1250 | 1305 | 15 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | | | | Status | Status | | | | | | Track | | | | |--------|------------------|-------------|--------|--------|----------------|---------------------|-----------------|--|-----------------|-------------------------------|---------|------------------|----------| | Date | No.
of People | Area Tested | | Stop I | Stop Duration, | Operational Status | OP
Stat Code | Operational Status Track - Comments Method | Track
Method | Method=Other
Explain | Pattern | Field Conditions | nditions | | 7/8/04 | 2 | WOODS | 1305 | 1510 | 125 | OCI | 4 | Ą | NA | SCHONSTEDT LINEAR | LINEAR | | MUDDY | | 7/8/04 | 2 | WOODS | 1510 | 1520 | 10 | DAILY START
STOP | 3 | BREAKDOWN
END OF
ACTIVITIES | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/9/04 | 2 | WOODS | 725 | 735 | 10 | DAILY START
STOP | 3 | START OF
OPERATIONS | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/9/04 | 2 | WOODS | 735 | 820 | 45 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/9/04 | 2 | WOODS | 820 | 955 | 95 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/9/04 | 2 | MOODS | 955 | 1015 | 20 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/9/04 | 2 | MOODS | 1015 | 1100 | 45 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/9/04 | 2 | MOODS | 1100 | 1120 | 20 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/9/04 | 2 | WOODS | 1120 | 1200 | 40 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 7/9/04 | 2 | MOODS | 1200 | 1235 | 35 | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 7/9/04 | 2 | WOODS | 1235 | 1255 | 20 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/9/04 | 2 | WOODS | 1255 | 1325 | 30 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | | SL | DY OY | |--------------------------|------------------|-------------------|-----------------------------------|------------------------|---------------------|-------------------|---------------------------|-------------------|---------------------------|-------------------|-------------------|-----------------------------------|--------------------------------| | | ndition | MUD | MUDI | MUDDY MUDI | | | Field Conditions | SUNNY MUDDY | SUNNY MUDDY | RAIN KAIN | CLOUDY | | | Pattern | LINEAR | Track
Method=Other | Explain | SCHONSTEDT LINEAR CLOUDY MUDDY | | Track | Method | NA | Operational Status Track | - Comments | COLLECT DATA | BREAKDOWN
END OF
ACTIVITIES | START OF
OPERATIONS | SET UP GRID | COLLECT DATA | MOVE STRING
ALONG GRID | COLLECT DATA | MOVE STRING
ALONG GRID | COLLECT DATA | WEATHER RAINI | BREAKDOWN
END OF
ACTIVITIES | START OF
OPERATIONS | | OP | Stat Code | 4 | 8 | 3 | 3 | 4 | 3 | 4 | 3 | 4 | ∞ | 3 | 3 | | Operational | Status | COLLECT DATA | DAILY START
STOP | DAILY START
STOP | DAILY START
STOP | COLLECT DATA | DAILY START
STOP | COLLECT DATA | DAILY START
STOP | COLLECT DATA | WEATHER | DAILY START
STOP | DAILY START
STOP | | Status
Stop Duration, | min | 35 (| 10 | 10 | 30 | 35 (| 2 | 40 | 15 | 105 | 150 | 10 | 10 | | Status
Stop I | Time | 1400 | 1410 | 740 | 810 | 845 | 850 | 930 | 945 | 1130 | 1400 | 1410 | 850 | | Status | Time | 1325 | 1400 | 730 | 740 | 810 | 845 | 850 | 930 | 945 | 1130 | 1400 | 840 | | | Area Tested | WOODS | WOODS | OPEN FIELD | No. | of People | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | Date | 7/9/04 | 7/9/04 | 7/12/04 | 7/12/04 | 7/12/04 | 7/12/04 | 7/12/04 | 7/12/04 | 7/12/04 | 7/12/04 | 7/12/04 | 7/13/04 | | ttern Field Conditions | EAR CLOUDY MUDDY | | EAR CLOUDY MUDDY | EAR CLOUDY MUDDY IEAR CLOUDY MUDDY | EAR CLOUDY MUDDY EAR CLOUDY MUDDY EAR CLOUDY MUDDY | EAR CLOUDY MUDDY EAR CLOUDY MUDDY EAR CLOUDY MUDDY | EAR CLOUDY MUDDY EAR CLOUDY MUDDY EAR CLOUDY MUDDY EAR CLOUDY MUDDY | EAR CLOUDY MUDDY | EAR CLOUDY MUDDY | EAR CLOUDY MUDDY | EAR CLOUDY MUDDY | EAR CLOUDY MUDDY | |---------------------------------|--------------------------------|--------------|--------------------------------|---|--|---|--|---|---|---|---|---| | Method=Other
Explain Pattern | SCHONSTEDT LINEAR CLOUDY MUDDY | | SCHONSTEDT LINEAR CLOUDY MUDDY | SCHONSTEDT LINEAR CLOUDY MUDDY SCHONSTEDT LINEAR CLOUDY MUDDY | SCHONSTEDT LINEAR CLOUDY MUDDY SCHONSTEDT LINEAR CLOUDY MUDDY SCHONSTEDT LINEAR CLOUDY MUDDY | SCHONSTEDT LINEAR CLOUDY MUDDY SCHONSTEDT LINEAR CLOUDY MUDDY SCHONSTEDT LINEAR CLOUDY MUDDY SCHONSTEDT LINEAR CLOUDY MUDDY | SCHONSTEDT LINEAR CLOUDY MUDDY | SCHONSTEDT LINEAR CLOUDY MUDDY | | T | NA SC | | NA | NA
NA | NA NA | NA NA NA | NA NA NA NA | NA NA NA NA NA NA | NA N | NA N | NA N | NA N | | | MOVE STRING
ALONG GRID | COLLECT DATA | | MOVE STRING
ALONG GRID | MOVE STRING
ALONG GRID
COLLECT DATA | MOVE STRING
ALONG GRID
COLLECT DATA
SET UP GRID | MOVE STRING
ALONG GRID
COLLECT DATA
SET UP GRID
BREAK/LUNCH | MOVE STRING ALONG GRID COLLECT DATA SET UP GRID BREAK/LUNCH COLLECT DATA | MOVE STRING ALONG GRID COLLECT DATA SET UP GRID BREAK/LUNCH COLLECT DATA MOVE STRING ALONG GRID | MOVE STRING ALONG GRID COLLECT DATA SET UP GRID COLLECT DATA MOVE STRING ALONG GRID COLLECT DATA | MOVE STRING ALONG GRID COLLECT DATA SET UP GRID SET UP GRID COLLECT DATA MOVE STRING ALONG GRID COLLECT DATA ALONG GRID ALONG GRID ALONG GRID ALONG GRID ALONG GRID | MOVE STRING ALONG GRID COLLECT DATA SET UP GRID SET UP GRID COLLECT DATA MOVE STRING ALONG GRID COLLECT DATA | | Stat Code | m | 4 | | 8 | 8 4 | 8 4 8 | ε 4 ε ν | E 4 E 2 | E 4 E & E | E 4 E 8 4 | E 4 E & E & E | E 4 E 8 4 E 4 | | | DAILY START
STOP | COLLECTION | COLLECT DATA | DAILY START | DAILY START STOP COLLECT DATA | DAILY START STOP COLLECT DATA DAILY START STOP | DAILY START STOP COLLECT DATA STOP STOP STOP |
DAILY START STOP COLLECT DATA STOP STOP STOP BREAK/LUNCH | DAILY START STOP COLLECT DATA STOP STOP BREAK/LUNCH COLLECT DATA STOP STOP | DAILY START STOP DAILY START STOP BREAK/LUNCH COLLECT DATA STOP COLLECT DATA STOP | DAILY START STOP DAILY START STOP BREAK/LUNCH COLLECT DATA STOP COLLECT DATA STOP STOP STOP STOP STOP STOP STOP STOP | DAILY START STOP DAILY START STOP BREAK/LUNCH COLLECT DATA STOP COLLECT DATA STOP COLLECT DATA | | <u>a</u> - | 10 | 99 | | 15 | 15 | 15 40 40 | 40 40 40 | 15 40 40 20 20 | 15 40 40 20 10 10 | 15
40
40
20
20
20 | 15
40
40
40
20
20
20
5 | 15
40
40
40
20
20
20
5 | | | 006 | 1005 | | 1020 | 1 1 | 11 11 | 11 11 12 | | | | | | | Time | 850 | 006 | | 1005 | 1005 | 1005 | 1005 | 1005 1100 1140 1120 | 1005
1020
11100
1120
1240 | 1005
1100
11140
11240
1250 | 1005
1100
11100
1220
1250
1310 | 1005
1020
1100
1120
1250
1316 | | Area Tested | OPEN FIELD | OPEN FIELD | | OPEN FIELD | OPEN FIELD OPEN FIELD | OPEN FIELD OPEN FIELD OPEN FIELD | OPEN FIELD OPEN FIELD OPEN FIELD | OPEN FIELD OPEN FIELD OPEN FIELD OPEN FIELD | OPEN FIELD OPEN FIELD OPEN FIELD OPEN FIELD | OPEN FIELD OPEN FIELD OPEN FIELD OPEN FIELD OPEN FIELD | OPEN FIELD OPEN FIELD OPEN FIELD OPEN FIELD OPEN FIELD OPEN FIELD | OPEN FIELD | | of People | 7 | 2 | | 2 | 2 2 | 2 2 2 | 2 2 2 2 | 2 2 2 2 | 2 2 2 2 2 | 2 2 2 2 2 2 | 2 2 2 2 2 2 | 2 2 2 2 2 2 2 | | Date | 7/13/04 | 7/13/04 | | 7/13/04 | 7/13/04 | 7/13/04 | 7/13/04 7/13/04 7/13/04 | 7/13/04 7/13/04 7/13/04 7/13/04 | 7/13/04 7/13/04 7/13/04 7/13/04 | 7/13/04 7/13/04 7/13/04 7/13/04 7/13/04 | 7/13/04 7/13/04 7/13/04 7/13/04 7/13/04 7/13/04 | 7/13/04 7/13/04 7/13/04 7/13/04 7/13/04 7/13/04 | | Area Tested Time | ; | | | | Status | | . : | | | | Track | | | | |--|------------------|---|-------------|------|--------|------------------|-----------------------|-----------------|-----------------------------------|-----------------|-------------------------|---------|----------|----------| | 1345 1420 35 COLLECT DATA 4 COLLECT DATA NA 1420 1435 15 DAILY START 3 MOVE STRING NA 1450 1515 1530 15 BREAKLUNCH S BREAKLUNCH NA 1515 1530 15 DAILY START 3 BREAKDOWN NA 1516 1530 15 DAILY START 3 BREAKDOWN NA 1517 1530 15 DAILY START 3 START OF ACTIVITIES NA 1518 1530 15 DAILY START 3 START OF NA 1519 1510 15 DAILY START 3 START OF NA 1510 1510 15 DAILY START 3 START OF NA 1510 1510 15 DAILY START 3 MOVE STRING NA 1510 1510 15 DAILY START 3 MOVE STRING NA 1510 1510 15 DAILY START 3 MOVE STRING NA 1510 1510 1510 DAILY START 3 MOVE STRING NA 1510 1510 1510 DAILY START 3 MOVE STRING NA 1510 1510 1510 DAILY START 3 MOVE STRING NA 1510 1510 1510 DAILY START 3 MOVE STRING NA 1510 1510 1510 DAILY START 3 MOVE STRING NA 1510 1510 1510 DAILY START 3 MOVE STRING NA 1510 1510 1510 DAILY START 3 MOVE STRING NA 1510 1510 1510 DAILY START 3 BREAKLUNCH NA 1510 151 | No.
of People | | Area Tested | | Stop I | Juration,
min | Operational
Status | OP
Stat Code | Operational Status - Comments | Track
Method | Method=Other
Explain | Pattern | Field Co | nditions | | 1420 1435 15 DALLY START 3 MOVE STRING NA STOP 1435 1450 15 BREAKLUNCH 5 BREAKLUNCH NA | 2 | | OPEN FIELD | | 1420 | | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT | LINEAR | CLOUDY | MUDDY | | 1436 15 15 15 15 15 15 15 1 | 2 | 1 | OPEN FIELD | 1420 | 1435 | 15 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT | LINEAR | CLOUDY | MUDDY | | 1450 1515 25 COLLECT DATA 4 COLLECT DATA NA BREAKDOWN NA STOP | 2 | | OPEN FIELD | 1435 | 1450 | | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT | LINEAR | CLOUDY | MUDDY | | 1515 1530 15 DAILY START 3 BREAKDOWN NA END OF ACTIVITIES | 2 | | OPEN FIELD | 1450 | 1515 | | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT | LINEAR | CLOUDY | MUDDY | | 725 740 15 DAILY START 3 START OF NA SCHONSTEDT LINEAR 740 820 40 DAILY START 3 SET UP GRID NA SCHONSTEDT LINEAR 820 850 30 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 850 915 25 DAILY START 3 MOVE STRING NA SCHONSTEDT LINEAR 915 935 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 935 950 15 DAILY START 3 MOVE STRING NA SCHONSTEDT LINEAR 850 1005 15 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 950 1005 15 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 950 1005 15 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 950 1005 15 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 950 1005 15 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 950 1005 15 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 950 1005 15 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 950 1005 15 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 950 1005 15 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 950 1005 1 | 2 | - | OPEN FIELD | | 1530 | 15 | DAILY START
STOP | 3 | BREAKDOWN
END OF
ACTIVITIES | NA | SCHONSTEDT | LINEAR | CLOUDY | MUDDY | | 740 820 40 DALLY START 3 SET UP GRID NA SCHONSTEDT LINEAR 8 80 850 30 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 9 15 25 DALLY START 3 MOVE STRING NA SCHONSTEDT LINEAR 9 15 935 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 9 15 950 15 DALLY START 3 MOVE STRING NA SCHONSTEDT LINEAR 9 20 1005 15 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR | 2 | | OPEN FIELD | 725 | 740 | 15 | DAILY START
STOP | 33 | START OF
OPERATIONS | NA | SCHONSTEDT | LINEAR | RAIN | MUDDY | | 820 850 30 COLLECT DATA 4 COLLECT DATA A SCHONSTEDT LINEAR 915 25 DAILY START 3 MOVE STRING
ALONG GRID NA SCHONSTEDT LINEAR 915 935 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 935 950 15 DAILY START 3 MOVE STRING
ALONG GRID NA SCHONSTEDT LINEAR 950 1005 15 BREAK/LUNCH 5 BREAK/LUNCH NA SCHONSTEDT LINEAR | 7 | - | OPEN FIELD | 740 | 820 | 40 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT | LINEAR | RAIN | MUDDY | | 850 915 25 DAILY START 3 MOVE STRING NA SCHONSTEDT LINEAR STOP ALONG GRID ALO | 2 | - | OPEN FIELD | 820 | 850 | | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT | LINEAR | RAIN | MUDDY | | 915 935 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 935 950 15 DAILY START 3 MOVE STRING NA SCHONSTEDT LINEAR STOP 950 1005 15 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR | 7 | | OPEN FIELD | 850 | 915 | 25 | DAILY START
STOP | 6 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT | LINEAR | RAIN | MUDDY | | 935 950 15 DAILY START 3 MOVE STRING NA SCHONSTEDT LINEAR STOP ALONG GRID ALONG GRID STOP STOP STOP STOP ALONG GRID STOP STOP STOP ALONG GRID STOP STOP ALONG GRID STOP STOP STOP STOP STOP STOP STOP STOP | 2 | | OPEN FIELD | 915 | 935 | | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT | LINEAR | RAIN | MUDDY | | 950 1005 15 BREAK/LUNCH 5 BREAK/LUNCH NA SCHONSTEDT LINEAR | 2 | | OPEN FIELD | 935 | 950 | | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT | LINEAR | RAIN | MUDDY | | | 2 | | OPEN FIELD | | 1005 | | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT | LINEAR | RAIN |
MUDDY | | | | | Status | Status | | | | | | Track | | | | |---------|-----|------------|--------|--------|----------------|---------------------|----|-----------------------------------|-------|-------------------|---------|------------------|---------| | , | No. | F con A | | Stop I | Stop Duration, | Operational | OP | Operational Status Track | Track | Method=Other | Dottorn | Diold Conditions | ditions | | 7/14/04 | 2 | OPEN FIELD | 1005 | 1035 | 30 | OLL | 4 | Z- | NA | SCHONSTEDT LINEAR | LINEAR | RAIN | MUDDY | | 7/14/04 | 2 | OPEN FIELD | 1035 | 1045 | 10 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | RAIN | MUDDY | | 7/14/04 | 2 | OPEN FIELD | 1045 | 1120 | 35 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | RAIN | MUDDY | | 7/14/04 | 2 | OPEN FIELD | 1120 | 1150 | 30 | DAILY START
STOP | c | SET UP GRID | NA | SCHONSTEDT LINEAR | LINEAR | RAIN | MUDDY | | 7/14/04 | 2 | OPEN FIELD | 1150 | 1230 | 40 | BREAK/LUNCH | S | BREAK/LUNCH | NA | SCHONSTEDT LINEAR | LINEAR | RAIN | MUDDY | | 7/14/04 | 2 | OPEN FIELD | 1230 | 1240 | 10 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | RAIN | MUDDY | | 7/14/04 | 2 | OPEN FIELD | 1240 | 1300 | 20 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | RAIN | MUDDY | | 7/14/04 | 2 | OPEN FIELD | 1300 | 1345 | 45 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | RAIN | MUDDY | | 7/14/04 | 2 | OPEN FIELD | 1345 | 1400 | 15 | DAILY START
STOP | 8 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | RAIN | MUDDY | | 7/14/04 | 2 | OPEN FIELD | 1400 | 1415 | 15 | DAILY START
STOP | 3 | BREAKDOWN
END OF
ACTIVITIES | NA | SCHONSTEDT LINEAR | LINEAR | RAIN | MUDDY | | 7/15/04 | 4 | OPEN FIELD | 725 | 740 | 15 | DAILY START
STOP | 3 | START OF
OPERATIONS | NA | SCHONSTEDT LINEAR | LINEAR | RAIN | MUDDY | | 7/15/04 | 4 | OPEN FIELD | 740 | 815 | 35 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | RAIN | MUDDY | | | Ž | | Status | Status | notion | Onorotional | ac | Onerational Status Treat | Track | Track
Mothod-Other | | | | |---------|-----------|-------------|--------|--------|----------|---------------------|-----------|---------------------------|--------|-------------------------------|---------|----------------------------|----------| | Date | of People | Area Tested | | Time | Time min | Status | Stat Code | - Comments | Method | | Pattern | Pattern Field Conditions | nditions | | 7/15/04 | 4 | OPEN FIELD | 815 | 830 | 15 | DAILY START
STOP | 8 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 7/15/04 | 4 | OPEN FIELD | 830 | 840 | 10 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/15/04 | 4 | OPEN FIELD | 840 | 915 | 35 | DAILY START
STOP | ς, | SET UP GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/15/04 | 4 | OPEN FIELD | 915 | 935 | 20 0 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 7/15/04 | 4 | OPEN FIELD | 935 | 945 | 10 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 7/15/04 | 4 | OPEN FIELD | 945 | 1000 | 15 0 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 7/15/04 | 4 | OPEN FIELD | 1000 | 1005 | 'n | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 7/15/04 | 4 | OPEN FIELD | 1005 | 1015 | 10 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/15/04 | 4 | OPEN FIELD | 1015 | 1030 | 15 1 | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 7/15/04 | 4 | OPEN FIELD | 1030 | 1050 | 20 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT LINEAR SUNNY | LINEAR | | MUDDY | | 7/15/04 | 4 | OPEN FIELD | 1050 | 1105 | 15 0 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/15/04 | 4 | OPEN FIELD | 1105 | 1125 | 20 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | ions | YDDY | MUDDY | MUDDY | MUDDY | IDDY | MUDDY |--|-------------------|---------------------------|-------------------|-------------------|---------------------|--------------|-----------------------------------|------------------------|---------------------------|-------------------|---------------------------|-------------------|---------------------|-------------------| | Condit | Y MU | | | | Y MU | | | | | | | Y MU | | Y MU | | Field Conditions | SUNNY MUDDY | SUNNY | SUNNY | SUNNY | SUNNY MUDDY | SUNNY | Pattern | LINEAR | Track
Method=Other
Explain | SCHONSTEDT LINEAR | SCHONSTEDT | SCHONSTEDT LINEAR | SCHONSTEDT | SCHONSTEDT LINEAR | SCHONSTEDT LINEAR | SCHONSTEDT LINEAR | SCHONSTEDT LINEAR | SCHONSTEDT | SCHONSTEDT LINEAR | | Track | NA | Operational Status Track - Comments Method | COLLECT DATA | MOVE STRING
ALONG GRID | BREAK/LUNCH | COLLECT DATA | SET UP GRID | COLLECT DATA | BREAKDOWN
END OF
ACTIVITIES | START OF
OPERATIONS | MOVE STRING
ALONG GRID | COLLECT DATA | MOVE STRING
ALONG GRID | COLLECT DATA | SET UP GRID | COLLECT DATA | | OP
Stat Code | 4 | 3 | 5 | 4 | 8 | 4 | 3 | 3 | 3 | 4 | 3 | 4 | 3 | 4 | | Operational
Status | COLLECT DATA | DAILY START
STOP | BREAK/LUNCH | COLLECT DATA | DAILY START
STOP | COLLECT DATA | DAILY START
STOP | DAILY START
STOP | DAILY START
STOP | COLLECT DATA | DAILY START
STOP | COLLECT DATA | DAILY START
STOP | COLLECT DATA | | Stop Duration, Time min | 20 | 15 | 35 | 30 | 35 | 55 | 30 | 20 | 2 | 15 | 10 | 10 | 15 | 10 | | Status
Stop I | 1145 | 1200 | 1235 | 1305 | 1340 | 1435 | 1505 | 750 | 755 | 810 | 820 | 830 | 845 | 855 | | Start
Start
Time | | 1145 | 1200 | 1235 | 1305 | 1340 | 1435 | 730 | 750 | 755 | 810 | 820 | 830 | 845 | | Area Tested | OPEN FIELD | No.
of People | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Date | 7/15/04 | 7/15/04 | 7/15/04 | 7/15/04 | 7/15/04 | 7/15/04 | 7/15/04 | 7/16/04 | 7/16/04 | 7/16/04 | 7/16/04 | 7/16/04 | 7/16/04 | 7/16/04 | | 4 OPEN FIELD 855 910 15 DAILY START 3 MOVE STRING
ALONG GRID NA SCHONSTEDT LINEAR 4 OPEN FIELD 930 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 4 OPEN FIELD 940 10 DAILY START 3 SET UP GRID NA SCHONSTEDT LINEAR 4 OPEN FIELD 950 1010 20 BREAKLUNCH 5 BREAKLUNCH NA SCHONSTEDT LINEAR 4 OPEN FIELD 1130 1140 10 COLLECT DATA 4 SCHONSTEDT LINEAR 4 OPEN FIELD 1140 120 DAILY START 3 SET UP GRID NA SCHONSTEDT LINEAR 4 OPEN FIELD 1140 120 DAILY START 3 SET UP GRID NA SCHONSTEDT LINEAR 4 OPEN FIELD 1140 120 DAILY START 3 SCHONSTEDT LINEAR 4 MOGULS 815 835 20 DAILY START | Date | No.
of People | Area Tested | Staffus
Start
Time | Status | Stop Duration,
Time min | Operational
Status | OP
Stat Code | Operational Status | Track | Track
Method=Other
Explain | Pattern | Field Conditions | nditions | |--|---------|------------------|-------------|--------------------------|--------|----------------------------|-----------------------|-----------------|-----------------------------------|-------|----------------------------------|---------|------------------|----------| | 4 OPEN FIELD 910 930 20 COLLECT DATA 4 COLLECT DATA NA 4 OPEN FIELD 940 10 DAILY START 3 MOVE STRING NA 4 OPEN FIELD 940 950 10 DAILY START 3 SET UP GRID NA 4 OPEN FIELD 1010 1130 80 DAILY START 3 SET UP GRID NA 4 OPEN FIELD 1140 10 COLLECT DATA 4 COLLECT DATA A 4 OPEN FIELD 1140 10 COLLECT DATA 4 COLLECT DATA A 4 OPEN FIELD 1140 10 COLLECT DATA 4 COLLECT DATA A 4 OPEN FIELD 1140 1200 20 DAILY START 3 SET UP GRID NA 4 MOGULS 815 835 20 DAILY START 3 SET UP GRID NA 4 MOGULS 950 1010 | 7/16/04 | 4 | OPEN FIELD | | 910 | 15 | DAILY START
STOP | 3 | | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 4 OPEN FIELD 930 940 10 DAILY START 3
MOVE STRING NA 4 OPEN FIELD 940 950 10 DAILY START 3 SET UP GRID NA 4 OPEN FIELD 1010 1130 80 DAILY START 3 SET UP GRID NA 4 OPEN FIELD 1130 1140 10 COLLECT DATA 4 COLLECT DATA NA 4 OPEN FIELD 1140 1200 20 DAILY START 3 SET UP GRID NA 4 OPEN FIELD 1140 1200 20 DAILY START 3 SET UP GRID NA 4 MOGULS 815 835 20 DAILY START 3 STARTOP NA 4 MOGULS 835 950 75 DAILY START 3 SET UP GRID NA 4 MOGULS 950 1010 20 COLLECT DATA 4 COLLECT DATA NA 4 | 7/16/04 | 4 | OPEN FIELD | 910 | 930 | | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT | LINEAR | | MUDDY | | 4 OPEN FIELD 940 950 10 DAILYSTART 3 SET UP GRID NA 4 OPEN FIELD 1010 1130 20 BREAKLUNCH 5 BREAKLUNCH NA 4 OPEN FIELD 1010 1130 1140 10 COLLECT DATA 4 COLLECT DATA NA 4 OPEN FIELD 1140 1200 20 DAILY START 3 BREAKDOWN NA 4 MOGULS 815 835 20 DAILY START 3 STATTOFF NA 4 MOGULS 835 950 75 DAILY START 3 SET UP GRID NA 4 MOGULS 835 950 75 DAILY START 3 SET UP GRID NA 4 MOGULS 950 1010 20 COLLECT DATA 4 COLLECT DATA NA 4 MOGULS 1010 1030 20 DAILY START 3 SET UP GRID NA | 7/16/04 | 4 | OPEN FIELD | 930 | 940 | 10 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT | LINEAR | | MUDDY | | 4 OPEN FIELD 950 1010 20 BREAKLUNCH 5 BREAKLUNCH NA 4 OPEN FIELD 1010 1130 80 DAILY START 3 SET UP GRID NA 4 OPEN FIELD 1140 1200 20 DAILY START 3 BREAKDOWN NA 4 MOGULS 815 835 20 DAILY START 3 BREAKDOWN NA 4 MOGULS 815 835 20 DAILY START 3 START OF NA 4 MOGULS 835 950 75 DAILY START 3 SET UP GRID NA 4 MOGULS 950 1010 20 COLLECT DATA 4 COLLECT DATA NA 4 MOGULS 950 1010 20 COLLECT DATA 4 COLLECT DATA NA 4 MOGULS 1010 20 COLLECT DATA 4 COLLECT DATA NA 4 MOGULS | 7/16/04 | 4 | OPEN FIELD | 940 | 950 | 10 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT | LINEAR | | MUDDY | | 4 OPEN FIELD 1010 1130 80 DAILY START 3 SET UP GRID NA SCHONSTEDT LINEAR 4 OPEN FIELD 1140 10 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 4 MOGULS 815 835 20 DAILY START 3 BREAKDOWN NA SCHONSTEDT LINEAR 4 MOGULS 815 835 20 DAILY START 3 SET UP GRID NA SCHONSTEDT LINEAR 4 MOGULS 835 950 75 DAILY START 3 SET UP GRID NA SCHONSTEDT LINEAR 4 MOGULS 950 1010 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 4 MOGULS 950 1010 20 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR 4 MOGULS 1010 1030 20 DAILY STA | 7/16/04 | 4 | OPEN FIELD | 950 | 1010 | | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 4 OPEN FIELD 1130 1140 10 COLLECT DATA 4 COLLECT DATA NA SCHONSTEDT LINEAR STOP 3 BREAKDOWN BEAKDOWN BEAKDOW | 7/16/04 | 4 | OPEN FIELD | 1010 | 1130 | 80 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 4 OPEN FIELD 1140 1200 20 DAILY START 3 BREAKDOWN BA END OF END OF END OF END OF ACTIVITIES 4 MOGULS 815 835 20 DAILY START 3 START OF OF END E | 7/16/04 | 4 | OPEN FIELD | 1130 | 1140 | | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 4 MOGULS 815 835 20 DAILY START 3 START OF OPERATIONS NA 4 MOGULS 835 950 75 DAILY START 3 SET UP GRID NA 4 MOGULS 950 1010 20 COLLECT DATA 4 COLLECT DATA NA 4 MOGULS 1010 1030 20 DAILY START 3 MOVE STRING NA 5TOP STOP STOP ALONG GRID NA | 7/16/04 | 4 | OPEN FIELD | 1140 | 1200 | 20 | DAILY START
STOP | 3 | BREAKDOWN
END OF
ACTIVITIES | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 4 MOGULS 835 950 75 DAILY START 3 SET UP GRID NA 4 MOGULS 950 1010 20 COLLECT DATA 4 COLLECT DATA NA 4 MOGULS 1010 1030 20 DAILY START 3 MOVE STRING NA 5TOP STOP STOP ALONG GRID NA | 7/19/04 | 4 | MOGULS | 815 | 835 | 20 | DAILY START
STOP | 3 | START OF
OPERATIONS | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 4 MOGULS 950 1010 20 COLLECT DATA 4 COLLECT DATA NA MOGULS 1010 1030 20 DAILY START 3 MOVE STRING NA STOP | 7/19/04 | 4 | MOGULS | 835 | 950 | 75 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 4 MOGULS 1010 1030 20 DAILY START 3 MOVE STRING NA STOP ALONG GRID | 7/19/04 | 4 | MOGULS | 950 | 1010 | | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | | 7/19/04 | 4 | MOGULS | 1010 | 1030 | 20 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | No. Date of People 7/19/04 4 7/19/04 4 7/19/04 4 7/19/04 4 7/19/04 4 7/19/04 4 7/19/04 4 | Area Tested
MOGULS | Start | Status | uration | | | | | LIACK | | _ | | |--|-----------------------|-------|----------------|-----------|---------------------|-----------|---------------------------|--------|-------------------------------|---------|-------------|----------| | | Area Tested MOGULS | | Stop Duration, | al actom, | Operational | OP | Operational Status Track | Track | Met | | | | | | MOGULS | | Time | | Status | Stat Code | - Comments | Method | \rightarrow | Pattern | | nditions | | | | 1030 | 1040 | 01 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | | MOGULS | 1040 | 1050 | 10 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | | MOGULS | 1050 | 1110 | 20 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | | MOGULS | 1110 | 1125 | 15 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | | MOGULS | 1125 | 1145 | 20 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | | MOGULS | 1145 | 1205 | 20 0 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | | MOGULS | 1205 | 1215 | 10 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/19/04 4 | MOGULS | 1215 | 1250 | 35 | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 7/19/04 4 | MOGULS | 1250 | 1315 | 25 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/19/04 4 | - MOGULS | 1315 | 1330 | 15 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/19/04 4 | MOGULS | 1330 | 1350 | 20 0 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/19/04 4 | MOGULS | 1350 | 1410 | 20 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | | | | Status | Status | | | | | | Track | | | | |---------|-----------|-------------|--------|--------|----------------|---------------------|-----------|-----------------------------------|--------|-------------------------------|---------|-------------|----------| | | No. | | | Stop I | Stop Duration, | Operational | OP | Operational Status Track | Track | Me | | | | | Date | of People | Area Tested | | Time | min | Status | Stat Code | | Method | Explain | Pattern | - 1 | nditions | | 7/19/04 | 4 | MOGULS | 1410 | 1440 | 30 | BREAK/LUNCH | 5 | BREAK/LUNCH | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 7/19/04 | 4 | MOGULS | 1440 | 1450 | 10 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 7/19/04 | 4 | MOGULS | 1450 | 1500 | 10 | DAILY START
STOP | 3 | BREAKDOWN
END OF
ACTIVITIES | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 7/20/04 | 4 | MOGULS | 740 | 008 | 20 | DAILY START
STOP | 3 | START OF
OPERATIONS | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 7/20/04 | 4 | MOGULS | 800 | 830 | 30 0 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/20/04 | 4 | MOGULS | 830 | 902 | 35 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/20/04 | 4 | MOGULS | 905 | 915 | 10 | COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/20/04 | 4 | MOGULS | 915 | 925 | 10 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY | MUDDY | | 7/20/04 | 4 | MOGULS | 925 | 940 | 15 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | 7/20/04 | 4 | MOGULS | 940 | 955 | 15 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/20/04 | 4 | MOGULS | 955 | 1010 | 15 (| COLLECT DATA | 4 | COLLECT DATA | NA | SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/20/04 | 4 | MOGULS | 1010 | 1025 | 15 | DAILY START
STOP | 3 | SET UP GRID | NA | SCHONSTEDT LINEAR | LINEAR | SUNNY MUDDY | MUDDY | | | | | Status | Status | | | | | | Track | | | | |---------|-----------------------|-------------|---------------------------|--------|----------------------------|-----------------------|-----------------|---|-----------------|---|---------|-----------|---------| | Date | No.
Date of People | Area Tested | Start Stop D
Time Time | Stop I | Stop Duration,
Time min | Operational
Status | OP
Stat Code | Operational Status Track Method=Other - Comments Method Explain | Track
Method | erational Status Track Method=Other
- Comments Method Explain Pattern Field Conditions | Pattern | Field Cor | ditions | | 7/20/04 | 4 | MOGULS | 1025 | 1040 | 15 | COLLECT DATA | 4 | COLLECT DATA NA SCHONSTEDT LINEAR SUNNY MUDDY | NA | SCHONSTEDT | LINEAR | SUNNY | MUDDY | | 7/20/04 | 4 | MOGULS | 1040 | 1055 | 15 | DAILY START
STOP | 3 | MOVE STRING
ALONG GRID | NA | NA SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/20/04 | 4 | MOGULS | 1055 | 1105 | 10 | COLLECT DATA | 4 | COLLECT DATA | | NA SCHONSTEDT LINEAR SUNNY MUDDY | LINEAR | SUNNY | MUDDY | | 7/20/04 | 4 | MOGULS | 1105 | 1115 | 10 1 | DEMOBILIZATION | 10 |
DEMOBILIZATION | NA | SCHONSTEDT LINEAR SUNNY | LINEAR | SUNNY | MUDDY | Note: Activities pertinent to this specific demonstration are indicated in highlighted text. ## APPENDIX E. REFERENCES - Standardized UXO Technology Demonstration Site Handbook, DTC Project No. 8-CO-160-000-473, Report No. ATC-8349, March 2002. - 2. Aberdeen Proving Ground Soil Survey Report, October 1998. - 3. Data Summary, UXO Standardized Test Site: APG Soils Description, May 2002. - 4. Yuma Proving Ground Soil Survey Report, May 2003. ## APPENDIX F. ABBREVIATIONS AEC = U.S. Army Environmental Center APG = Aberdeen Proving Ground ASCII = American Standard Code for Information Interchange. ATC = U.S. Army Aberdeen Test Center EM = electromagnetic EMI = electromagnetic interference EMIS = Electromagnetic Induction Spectroscopy ERDC = U.S. Army Corps of Engineers Engineering Research and Development Center ESTCP = Environmental Security Technology Certification Program EQT = Army Environmental Quality Technology Program GPS = Global Positioning System HFA = Human Factors Applications, Inc. JPG = Jefferson Proving Ground POC = point of contact QA = quality assurance QC = quality control ROC = receiver-operating characteristic RTK = real time kinematic RTS = Robotic Total Station SERDP = Strategic Environmental Research and Development Program UXO = unexploded ordnance YPG = U.S. Army Yuma Proving Ground ## APPENDIX G. DISTRIBUTION LIST ## DTC Project No.8-CO-160-UXO-021 | Addressee | No. of Copies | |--|---------------| | Commander U.S. Army Environmental Center ATTN: SFIM-AEC-ATT (Mr. George Robitaille) Aberdeen Proving Ground, MD 21010-5401 | 2 | | Human Factors Applications, Inc. ATTN: (Mr. Scott Hemstreet) 8 Jay Gould Ct. (Unit D) Waldorf, MD 20602 | 1 | | SERDP/ESTCP
ATTN: (Ms. Anne Andrews)
901 North Stuart Street, Suite 303
Arlington, VA 22203 | 1 | | Commander U.S. Army Aberdeen Test Center ATTN: CSTE-DTC-SL-E (Mr. Larry Overbay) (Library) CSTE-DTC-AT-CS-R Aberdeen Proving Ground, MD 21005-5059 | 1
1
1 | | Defense Technical Information Center
8725 John J. Kingman Road, STE 0944
Fort Belvoir, VA 22060-6218 | 2 | Secondary distribution is controlled by Commander, U.S. Army Environmental Center, ATTN: SFIM-AEC-ATT.